首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Summary A relative equilibrium of a Hamiltonian system with symmetry is a point of phase space giving an evolution which is a one-parameter orbit of the action of the symmetry group of the system. The evolutions of sufficiently small perturbations of a formally stable relative equilibrium are arbitrarily confined to that relative equilibrium's orbit under the isotropy subgroup of its momentum. However, interesting evolution along that orbit, here called drift, does occur. In this article, linearizations of relative equilibria are used to construct a first order perturbation theory explaining drift, and also to determine when the set of relative equilibria near a given relative equilibrium is a smooth symplectic submanifold of phase space.  相似文献   

3.
Summary. We describe a method for finding the families of relative equilibria of molecules that bifurcate from an equilibrium point as the angular momentum is increased from 0 . Relative equilibria are steady rotations about a stationary axis during which the shape of the molecule remains constant. We show that the bifurcating families correspond bijectively to the critical points of a function h on the two-sphere which is invariant under an action of the symmetry group of the equilibrium point. From this it follows that for each rotation axis of the equilibrium configuration there is a bifurcating family of relative equilibria for which the molecule rotates about that axis. In addition, for each reflection plane there is a family of relative equilibria for which the molecule rotates about an axis perpendicular to the plane. We also show that if the equilibrium is nondegenerate and stable, then the minima, maxima, and saddle points of h correspond respectively to relative equilibria which are (orbitally) Liapounov stable, linearly stable, and linearly unstable. The stabilities of the bifurcating branches of relative equilibria are computed explicitly for XY 2 , X 3 , and XY 4 molecules. These existence and stability results are corollaries of more general theorems on relative equilibria of G -invariant Hamiltonian systems that bifurcate from equilibria with finite isotropy subgroups as the momentum is varied. In the general case, the function h is defined on the Lie algebra dual {\frak g} * and the bifurcating relative equilibria correspond to critical points of the restrictions of h to the coadjoint orbits in {\frak g} * . Received June 9, 1997; second revision received December 15, 1997; final revision received January 19, 1998  相似文献   

4.
In this paper, the author proves that the existence of a class of relative equilibria for SO(3)-symmetric n-body problems on a sphere implies that these problems are in fact O(3)-symmetric in a time-reversing sense. Besides this “inverse” result, the author also proves a set of “direct” results, in which the existence of certain symmetric relative equilibria are deduced purely from symmetry considerations of the n-body problems on a sphere. The author then formulates an explicit method for the reduction of this class of symmetric Hamiltonians, which leads to symplectic shape or relative variables for the further study of the relative equilibria and equilibria. This class of problems includes the point vortex problem on a sphere, and the author applies the main results in this paper to that problem. © 1998 John Wiley & Sons, Inc.  相似文献   

5.
We study the propagation of errors in the numerical integration of perturbations of relative equilibrium solutions of Hamiltonian differential equations with symmetries. First it is shown that taking an initial perturbation of a relative equilibrium, the corresponding solution is related, in a first approximation, to another relative equilibrium, with the parameters perturbed from the original. Then, this is used to prove that, for stable relative equilibria, error growth with respect to the perturbed solution is in general quadratic, but only linear for schemes that preserve the invariant quantities of the problem. In this sense, the conclusion is similar to the one obtained when integrating unperturbed relative equilibria. Numerical experiments illustrate the results.  相似文献   

6.
This paper deals with the analysis of Hamiltonian Hopf as well as saddle-center bifurcations in 4-DOF systems defined by perturbed isotropic oscillators (1:1:1:1 resonance), in the presence of two quadratic symmetries Ξ and L 1. When we normalize the system with respect to the quadratic part of the energy and carry out a reduction with respect to a three-torus group we end up with a 1-DOF system with several parameters on the thrice reduced phase space. Then, we focus our analysis on the evolution of relative equilibria around singular points of this reduced phase space. In particular, dealing with the Hamiltonian Hopf bifurcation the ‘geometric approach’ is used, following the steps set up by one of the authors in the context of 3-DOF systems. In order to see the interplay between integrals and physical parameters in the analysis of bifurcations, we consider as a perturbation a one-parameter family, which in particular includes one of the classical Stark–Zeeman models (parallel case) in three dimensions.  相似文献   

7.
Summary It is known that the Hamiltonian motion of a mechanical system with symmetry induces Hamiltonian flows on reduced phase spaces. In this paper we apply Morse theory to study the relationship between the topology of the reduced space and the number of relative equilibria in the corresponding momentum level set. Our attention is restricted to simple mechanical systems with compact configuration space and compact symmetry group. We begin by showing that the set of relative equilibria in a level set of the momentum map is compact. We then employ techniques from Morse theory to prove that the number of orbits of relative equilibria with momentum in the coadjoint orbit of a given regular momentum value is bounded below by the the sum of Betti numbers of the corresponding reduced space when the Hamiltonian is fibre quadratic and the reduced Hamiltonian is nondegenerate. In addition, for a certain class of group actions on the configuration manifold, it is shown that the above result extends to Hamiltonians of the form potential plus kinetic.  相似文献   

8.
A fundamental class of solutions of symmetric Hamiltonian systems is relative equilibria. In this paper the nonlinear problem near a degenerate relative equilibrium is considered. The degeneracy creates a saddle-center and attendant homoclinic bifurcation in the reduced system transverse to the group orbit. The surprising result is that the curvature of the pullback of the momentum map to the Lie algebra determines the normal form for the homoclinic bifurcation. There is also an induced directional geometric phase in the homoclinic bifurcation. The backbone of the analysis is the use of singularity theory for smooth mappings between manifolds applied to the pullback of the momentum map. The theory is constructive and generalities are given for symmetric Hamiltonian systems on a vector space of dimension (2n+2) with an n-dimensional abelian symmetry group. Examples for n=1,2,3 are presented to illustrate application of the theory.  相似文献   

9.
We prove that for every proper Hamiltonian action of a Lie group G in finite dimensions the momentum map is locally G-open relative to its image (i.e. images of G-invariant open sets are open). As an application we deduce that in a Hamiltonian system with continuous Hamiltonian symmetries, extremal relative equilibria persist for every perturbation of the value of the momentum map, provided the isotropy subgroup of this value is compact. We also demonstrate how this persistence result applies to an example of ellipsoidal figures of rotating fluid. We also provide an example with plane point vortices which shows how the compactness assumption is related to persistence.  相似文献   

10.
A relative equilibrium is a periodic orbit of the n-body problem that rotates uniformly maintaining the same central configuration for all time. In this paper we generalize some results of R. Moeckel and we apply it to study the linear stability of relative equilibria in the charged three-body problem. We find necessary conditions to have relative equilibria linearly stable for the collinear charged three-body problem, for planar relative equilibria we obtain necessary and sufficient conditions for linear stability in terms of the parameters, masses and electrostatic charges. In the last case we obtain a stability inequality which generalizes the Routh condition of celestial mechanics. We also proof the existence of spatial relative equilibria and the existence of planar relative equilibria of any triangular shape.  相似文献   

11.
In 1956 Whitham gave a nonlinear theory for computing the intensity of an acoustic pulse of an arbitrary shape. The theory has been used very successfully in computing the intensity of the sonic bang produced by a supersonic plane. [4.] derived an approximate quasi-linear equation for the propagation of a short wave in a compressible medium. These two methods are essentially nonlinear approximations of the perturbation equations of the system of gas-dynamic equations in the neighborhood of a bicharacteristic curve (or rays) for weak unsteady disturbances superimposed on a given steady solution. In this paper we have derived an approximate quasi-linear equation which is an approximation of perturbation equations in the neighborhood of a bicharacteristic curve for a weak pulse governed by a general system of first order quasi-linear partial differential equations in m + 1 independent variables (t, x1,…, xm) and derived Gubkin's result as a particular case when the system of equations consists of the equations of an unsteady motion of a compressible gas. We have also discussed the form of the approximate equation describing the waves propagating upsteam in an arbitrary multidimensional transonic flow.  相似文献   

12.
We study the dynamics of a family of perturbed three-degree-of-freedom Hamiltonian systems which are in 1:1:1 resonance. The perturbation consists of axially symmetric cubic and quartic arbitrary polynomials. Our analysis is performed by normalisation, reduction and KAM techniques. Firstly, the system is reduced by the axial symmetry, and then, periodic solutions and KAM 3-tori of the full system are determined from the relative equilibria. Next, the oscillator symmetry is extended by normalisation up to terms of degree 4 in rectangular coordinates; after truncation of higher orders and reduction to the orbit space, some relative equilibria are established and periodic solutions and KAM 3-tori of the original system are obtained. As a third step, the reduction in the two symmetries leads to a one-degree-of-freedom system that is completely analysed in the twice reduced space. All the relative equilibria together with the stability and parametric bifurcations are determined. Moreover, the invariant 2-tori (related to the critical points of the twice reduced space), some periodic solutions and the KAM 3-tori, all corresponding to the full system, are established. Additionally, the bifurcations of equilibria occurring in the twice reduced space are reconstructed as quasi-periodic bifurcations involving 2-tori and periodic solutions of the full system.  相似文献   

13.
14.
In this paper, we consider the conductivity problem with piecewise‐constant conductivity and Robin‐type boundary condition on the interface of discontinuity. When the quantity of interest is the jump of the conductivity, we perform a local stability estimate for a parameterized non‐monotone family of domains. We give also a quantitative stability result of local optimal solution with respect to a perturbation of the Robin parameter. In order to find an optimal solution, we propose a Kohn–Vogelius‐type cost functional over a class of admissible domains subject to two boundary values problems. The analysis of the stability involves the computation of first‐order and second‐order shape derivative of the proposed cost functional, which is performed rigorously by means of shape‐Lagrangian formulation without using the shape sensitivity of the states variables. © 2016 The Author. Mathematical Methods in the Applied Sciences Published by John Wiley & Sons Ltd.  相似文献   

15.
We study both theoretically and numerically the Lyapunov families which bifurcate in the vertical direction from a horizontal relative equilibrium in ℝ3. As explained in [1], very symmetric relative equilibria thus give rise to some recently studied classes of periodic solutions. We discuss the possibility of continuing these families globally as action minimizers in a rotating frame where they become periodic solutions with particular symmetries. A first step is to give estimates on intervals of the frame rotation frequency over which the relative equilibrium is the sole absolute action minimizer: this is done by generalizing to an arbitrary relative equilibrium the method used in [2] by V. Batutello and S. Terracini. In the second part, we focus on the relative equilibrium of the equal-mass regular N-gon. The proof of the local existence of the vertical Lyapunov families relies on the fact that the restriction to the corresponding directions of the quadratic part of the energy is positive definite. We compute the symmetry groups G r/s (N, k, η) of the vertical Lyapunov families observed in appropriate rotating frames, and use them for continuing the families globally. The paradigmatic examples are the “Eight” families for an odd number of bodies and the “Hip- Hop” families for an even number. The first ones generalize Marchal’s P 12 family for 3 bodies, which starts with the equilateral triangle and ends with the Eight [1, 3–6]; the second ones generalize the Hip-Hop family for 4 bodies, which starts from the square and ends with the Hip-Hop [1, 7, 8]. We argue that it is precisely for these two families that global minimization may be used. In the other cases, obstructions to the method come from isomorphisms between the symmetries of different families; this is the case for the so-called “chain” choreographies (see [6]), where only a local minimization property is true (except for N = 3). Another interesting feature of these chains is the deciding role played by the parity, in particular through the value of the angular momentum. For the Lyapunov families bifurcating from the regular N-gon whith N ≤ 6 we check in an appendix that locally the torsion is not zero, which justifies taking the rotation of the frame as a parameter. To the memory of J. Moser, with admiration  相似文献   

16.
The relative equilibria for the spherical, finite density three-body problem are identified. Specifically, there are 28 distinct relative equilibria in this problem which include the classical five relative equilibria for the point-mass three-body problem. None of the identified relative equilibria exist or are stable over all values of angular momentum. The stability and bifurcation pathways of these relative equilibria are mapped out as the angular momentum of the system is increased. This is done under the assumption that they have equal and constant densities and that the entire system rotates about its maximum moment of inertia. The transition to finite density greatly increases the number of relative equilibria in the three-body problem and ensures that minimum energy configurations exist for all values of angular momentum.  相似文献   

17.
We examine existence and stability of relative equilibria of the n-vortex problem specialized to the case where N vortices have small and equal circulation and one vortex has large circulation. As the small circulation tends to zero, the weak vortices tend to a circle centered on the strong vortex. A special potential function of this limiting problem can be used to characterize orbits and stability. Whenever a critical point of this function is nondegenerate, we prove that the orbit can be continued via the Implicit Function Theorem, and its linear stability is determined by the eigenvalues of the Hessian matrix of the potential. For N≥3 there are at least three distinct families of critical points associated to the limiting problem. Assuming nondegeneracy, one of these families continues to a linearly stable class of relative equilibria with small and large circulation of the same sign. This class becomes unstable as the small circulation passes through zero and changes sign. Another family of critical points which is always nondegenerate continues to a configuration with small vortices arranged in an N-gon about the strong central vortex. This class of relative equilibria is linearly unstable regardless of the sign of the small circulation when N≥4. Numerical results suggest that the third family of critical points of the limiting problem also continues to a linearly unstable class of solutions of the full problem independent of the sign of the small circulation. Thus there is evidence that linearly stable relative equilibria exist when the large and small circulation strengths are of the same sign, but that no such solutions exist when they have opposite signs. The results of this paper are in contrast to those of the analogous celestial mechanics problem, for which the N-gon is the only relative equilibrium for N sufficiently large, and is linearly stable if and only if N≥7.  相似文献   

18.
Summary In this paper we rigorously show the existence and smoothness inε of traveling wave solutions to a periodic Korteweg-deVries equation with a Kuramoto-Sivashinsky-type perturbation for sufficiently small values of the perturbation parameterε. The shape and the spectral transforms of these traveling waves are calculated perturbatively to first order. A linear stability theory using squared eigenfunction bases related to the spectral theory of the KdV equation is proposed and carried out numerically. Finally, the inverse spectral transform is used to study the transient and asymptotic stages of the dynamics of the solutions.  相似文献   

19.
We prove the nonlinear stability or instability of certain periodic equilibria of the 1½D relativistic Vlasov‐Maxwell system. In particular, for a purely magnetic equilibrium with vanishing electric field, we prove its nonlinear stability under a sharp criterion by extending the usual Casimir‐energy method in several new ways. For a general electromagnetic equilibrium we prove that nonlinear instability follows from linear instability. The nonlinear instability is macroscopic, involving only the L1‐norms of the electromagnetic fields. © 2006 Wiley Periodicals, Inc.  相似文献   

20.
In this paper, we study the relativistic Vlasov-Fokker-Planck-Maxwell system in one space variable and two momentum variables. This non-linear system of equations consists of a transport equation for the phase space distribution function combined with Maxwell's equations for the electric and magnetic fields. It is important in modelling distribution of charged particles in the kinetic theory of plasma. We prove the existence of a classical solution when the initial density decays fast enough with respect to the momentum variables. The solution which shares this same decay condition along with its first derivatives in the momentum variables is unique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号