首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper reports the findings from a further study of the 2D and stereo PIV data obtained in the interaction zone between the separated turbulent boundary layer over a 2D ramp and round synthetic jets by the authors. The synthetic jets are operated at two actuation frequencies with one being close to the natural frequency of the separated shear layer. Both the triple decomposition technique and Q-criterion are employed to investigate how the separated flow responds to the passage of different parts of the vortical structures produced by the synthetic jets during an actuation cycle at different synthetic jet operating conditions. An attempt is made to explain the observed differences in the ways that the separated flow responds to the actuation of synthetic jets at the two actuation frequencies. A better understanding of the mechanism of flow separation delay using round synthetic jets is obtained, leading to a more complete physical model describing the interaction mechanism.  相似文献   

2.
以小展弦比飞翼式无人机为对象,开展了基于零质量射流的主动流动控制数值模拟研究. 比较分析了应用零质量射流前后飞翼式无人机纵向气动特性的改善效果,并通过流场特征的分析探讨了流动控制技术产生气动增益的原因. 研究结果表明在模型中等迎角、大迎角范围,零质量射流技术可以显著增加升力系数,最大幅值达25%,并且拓宽了纵向力矩的线性范围. 机理分析表明,零质量射流扰动通过提高模型绕流场的边界层掺混,增强附面层内外的动量输运,使得附面层有足够的能量克服逆压梯度和黏性损耗,从而达到减缓流动分离甚至使分离流再附的目的.  相似文献   

3.
飞翼布局无人机流动分离控制及机理分析   总被引:1,自引:0,他引:1  
许晓平  周洲 《力学学报》2014,46(4):497-504
以小展弦比飞翼式无人机为对象,开展了基于零质量射流的主动流动控制数值模拟研究. 比较分析了应用零质量射流前后飞翼式无人机纵向气动特性的改善效果,并通过流场特征的分析探讨了流动控制技术产生气动增益的原因. 研究结果表明在模型中等迎角、大迎角范围,零质量射流技术可以显著增加升力系数,最大幅值达25%,并且拓宽了纵向力矩的线性范围. 机理分析表明,零质量射流扰动通过提高模型绕流场的边界层掺混,增强附面层内外的动量输运,使得附面层有足够的能量克服逆压梯度和黏性损耗,从而达到减缓流动分离甚至使分离流再附的目的.   相似文献   

4.
The transition and separation processes of the boundary layer developing on a flat plate under a prescribed adverse pressure gradient typical of Ultra-High-Lift low-pressure turbine profiles have been investigated, with and without the application of a synthetic jet (zero net mass flow rate jet). A mechanical piston has been adopted to produce an intermittent flow with zero net mass flow rate. The capability of the device to suppress or reduce the large laminar separation bubble occurring under steady inflow condition at low Reynolds numbers has been experimentally investigated by means of hot-wire measurements. Wall static pressure measurements complement the hot-wire time-resolved velocity results. The paper reports the investigations performed for both steady and controlled conditions. The active device is able to control the laminar separation bubble induced at low Reynolds number conditions by the strong adverse pressure gradient. An overall view of the time-dependent evolution of the controlled boundary layer is provided by the phase-locked ensemble averaging technique, triggered at the synthetic jet frequency. The separated flow transition process, which is detected for the uncontrolled condition, is modified by the synthetic jet in different ways during the blowing and suction phases. Overall, the phase-locked velocity distributions show a reduced separated flow region for the whole jet cycle as compared to the uncontrolled condition. The phase-locked distributions of the random unsteadiness allow the identification of vortical structures growing along the shear layer mainly during the blowing phase.  相似文献   

5.
Laminar separation and transition processes of the boundary layer developing under a strong adverse pressure gradient, typical of Ultra-High-Lift turbine profiles, have been experimentally investigated for a low Reynolds number case. The boundary layer development has been surveyed for different conditions: with steady inflow, with incoming wakes and with the synchronized forcing effects due to both incoming wakes and synthetic jet (zero net mass flow rate jet). In this latter case, the jet Strouhal number has been set equal to half the wake-reduced frequency to synchronize the unsteady forcing effects on the boundary layer. Measurements have been taken by means of a single-sensor hot-wire anemometer. For the steady inflow case, particle image velocimetry has been employed to visualize the large-scale vortical structures shed as a consequence of the Kelvin?CHelmholtz instability mechanism. For the unsteady inflow cases, a phase-locked ensemble averaging technique, synchronized with the wake and the synthetic jet frequencies, has been adopted to reconstruct the boundary layer space-time evolution. Results have been represented as color plots, for several time instants of the forcing effect period, in order to provide an overall view of the time-dependent transition and separation processes in terms of ensemble-averaged velocity and unresolved unsteadiness distributions. The phase-locked distributions of the unresolved unsteadiness allowed the identification of the instability mechanisms driving transition as well as the Kelvin?CHelmholtz structures that grow within the separated shear layer during the incoming wake interval and the synthetic jet operating period. Incoming wakes and synthetic jet effects in reducing and/or suppressing flow separation are investigated in depth.  相似文献   

6.
This study investigates an actuation scheme that can be integrated as part of a feedback control system in the laboratory for the purpose of negating the transient growth instability in a Blasius boundary layer and delaying transition. The actuators investigated here consist of a spanwise array of symmetric plasma actuators, which are capable of generating spanwise-periodic counter-rotating vortices. Three different actuator geometries are investigated, resulting in 45, 67 and 70% reduction of the total disturbance energy produced inside the boundary layer by an array of roughness elements. It is demonstrated that the control effectiveness of the actuators can be significantly improved by optimizing the geometry of the array.  相似文献   

7.
Fluidic oscillators for flow control   总被引:1,自引:0,他引:1  
Fluidic oscillators are based on the bi-stable states of a jet (or a pair of jets) of fluid inside a specially designed flow chamber. These produce sweeping or pulsing jets of high exit velocity (~sonic exit velocities) extending the control authority achievable to high subsonic flows. Sweeping and pulsing jets with frequencies ranging from 1 to 20 kHz have been obtained with meso-scale (nozzle sizes in the range of 200 μm–1 mm) fluidic oscillators with very low mass flow rates of the order of 1 g/s. Such actuators have been recently used in laboratory scale experiments for separation control and cavity noise control with significant promise to be implemented in full-scale systems. In this paper, we provide a historical background of fluidic oscillators and methods to produce either sweeping or pulsing jets, their typical frequency, flow rate, and scaling characteristics. Some challenges in detailed characterization of such actuators through measurement will be presented. We will also discuss some of the system integration issues of translating this technology into practice. This is followed by a brief discussion of the need for further development of such actuators and the understanding of the mechanism by which flow control is achieved by these sweeping jets.  相似文献   

8.
The flow field of a radial wall jet created by the impingement of a round synthetic jet normal to a flat surface was characterized using hot-wire anemometry. In the synthetic wall jets the width of the outer layer was observed to increase linearly with the radial distance along the wall, while the local maximum velocity varied inversely. The synthetic wall jet exhibits self-similar behavior as distinguished by the collapse of the mean and rms velocity profiles when normalized by the outer layer scaling variables. Increasing the actuator driving amplitude at a fixed frequency (i) increased the growth rate of the outer layer, and (ii) decreased the decay rate of the local velocity maximum. The flow field of the synthetic wall jet was dominated by vortical structures associated with the actuator driving frequency, and harmonics connected with the interaction of the produced vortex structures. For the actuator conditions investigated, neither the classical laminar nor fully turbulent analytical solutions for continuous wall jets were amenable to modeling the synthetic wall jet profile due to the transitional and unsteady nature of the synthetic wall jet.  相似文献   

9.
A localised synthetic jet offers promise of an optimum and cost-effective practical method of delaying separation and promoting reattachment in fluids with solid body interactions. The asymmetric flow that may result from its use may also be beneficial in improving the aerodynamic performance of a lifting body. There are insufficient studies of synthetic jets, particularly on three-dimensional bluff bodies that are more representative of complex flows in real situations. A comprehensive study on an 80 mm diameter sphere designed with localised synthetic jet orifices was, therefore, conducted in an 18 in×18 in open circuit closed test-section wind tunnel at a Reynolds number of 5×104. The coefficient of pressure distribution was measured by continuously varying the location of the synthetic jet and compared with the no synthetic jet condition. The three-dimensional effects on the flow over the sphere body are particularly made apparent through the growth and the effects of the boundary layer and the deviation from potential flow. Overall, the synthetic jet had the effect of delaying the separation point and extending it further downstream on the sphere surface concomitantly producing a significant reduction in drag, providing solid support to the viability of strategically located synthetic jet when higher lift or lower drag is desired. A surprising discovery was the ability of the synthetic jet to improve the flow at the junction of the sting support and sphere. This has promising implications in devising methods to reduce interference drag that are common in many practical applications such as near junctions between wing and the fuselage.  相似文献   

10.
 An actuator, which produces several different flow fields that may be used for active flow control, is characterized in still air using flow visualization and velocity measurements. The primary actuator-induced flow fields are: free jets, wall jets, and vortex flows. The non-dimensional parameters governing these actuator-induced flows are developed. For the vortex-flow regime, the operational range of the actuator increases as it’s size decreases without a significant decrease in either the actuator induced velocity or vortex core size. The velocity scaling is developed for the vortex flow and suggests that the optimum actuator efficiency occurs at a Stokes number of approximately 7.9 for the range of parameters surveyed. In a turbulent, zero pressure gradient boundary layer, measurements made just downstream of the actuator (when operated in the vortex mode) indicate a vortical disturbance is generated in the boundary layer. Received: 2 September 1998/Accepted: 9 January 1999  相似文献   

11.
Di Cicca  G.  Iuso  G.  Spazzini  P.  Onorato  M. 《Experiments in fluids》2002,33(5):663-669
Vortex generator jets were used to generate large-scale longitudinal vortices embedded in a flat-plate turbulent boundary layer. The investigation was performed in a water tunnel, measuring instantaneous flow fields in planes parallel and normal to the flat plate, using particle image velocimetry. The objective of the research was to observe the response of near-wall turbulence to the imposed perturbing flow. It was shown that a small-amplitude forcing vortical flow had significant influence on the mean and fluctuating velocity profiles. Moreover, particle image velocimetry permitted speculation upon the behaviour of the wall velocity streaks under the action of the perturbing forcing vortical flow.  相似文献   

12.
Active control of flow separation over an airfoil using synthetic jets   总被引:1,自引:0,他引:1  
We perform large-eddy simulation of turbulent flow separation over an airfoil and evaluate the effectiveness of synthetic jets as a separation control technique. The flow configuration consists of flow over an NACA 0015 airfoil at Reynolds number of 896,000 based on the airfoil chord length and freestream velocity. A small slot across the entire span connected to a cavity inside the airfoil is employed to produce oscillatory synthetic jets. Detailed flow structures inside the synthetic-jet actuator and the synthetic-jet/cross-flow interaction are simulated using an unstructured-grid finite-volume large-eddy simulation solver. Simulation results are compared with the 2005 experimental data of Gilarranz et al., and qualitative and quantitative agreements are obtained for both uncontrolled and controlled cases. As in the experiment, the present large-eddy simulation confirms that synthetic-jet actuation effectively delays the onset of flow separation and causes a significant increase in the lift coefficient. Modification of the blade boundary layer due to oscillatory blowing and suction and its role in separation control is discussed.  相似文献   

13.
Stereo particle image velocimetry measurements focus on the flow structure and turbulence within the tip leakage vortex (TLV) of an axial waterjet pump rotor. Unobstructed optical access to the sample area is achieved by matching the optical refractive index of the transparent pump with that of the fluid. Data obtained in closely spaced planes enable us to reconstruct the 3D TLV structure, including all components of the mean vorticity and strain-rate tensor along with the Reynolds stresses and associated turbulence production rates. The flow in the tip region is highly three-dimensional, and the characteristics of the TLV and leakage flow vary significantly along the blade tip chordwise direction. The TLV starts to roll up along the suction side tip corner of the blade, and it propagates within the passage toward the pressure side of the neighboring blade. A shear layer with increasing length connects the TLV to the blade tip and initially feeds vorticity into it. During initial rollup, the TLV involves entrainment of a few vortex filaments with predominantly circumferential vorticity from the blade tip. Being shed from the blade, these filaments also have high circumferential velocity and appear as swirling jets. The circumferential velocity in the TLV core is also substantially higher than that in the surrounding passage flow, but the velocity peak does not coincide with the point of maximum vorticity. When entrainment of filaments stops in the aft part of the passage, newly forming filaments wrap around the core in helical trajectories. In ensemble-averaged data, these filaments generate a vortical region that surrounds the TLV with vorticity that is perpendicular to that in the vortex core. Turbulence within the TLV is highly anisotropic and spatially non-uniform. Trends can be traced to high turbulent kinetic energy and turbulent shear stresses, e.g., in the shear layer containing the vortex filaments and the contraction region situated along the line where the leakage backflow meets the throughflow, causing separation of the boundary layer at the pump casing. Upon exposure to adverse pressure gradients in the aft part of the passage, at 0.65–0.7 chord fraction in the present conditions, the TLV bursts into a broad turbulent array of widely distributed vortex filaments.  相似文献   

14.
The vortical structures in the rear separation and wake region produced by a micro-ramp that immersed in a supersonic turbulent boundary layer are investigated. The small scale separation close to the trailing edge was revealed and this confirms the previous experimental observation. Between the reverse region and surrounding fast moving flow, a three-dimensional shear layer was formed, and vortices are generated. By using vortex line method, the spiral points were illustrated as the cross-sections of the Ω-shaped vortices that follow the shape of the separation. The vortical structure was analogous to that in the wake region, where similar Ω-shaped vortex which follows the deficit region caused by the micro-ramp can be observed. Finally, the revealed flow topology was conceived new and beneficial to the studying of wall bounded turbulence which involves similar vortical structures but in a smaller scale, compared with the vortical pattern in the current micro-ramp wake.  相似文献   

15.
A theoretical analysis is described that determines the conditions for Helmholtz resonance for a popular class of self-contained microjet actuator used in both synthetic- and pressure-jump (pulse-jet) mode. It was previously shown that the conditions for Helmholtz resonance are identical to those for optimizing actuator performance for maximum mass flux. The methodology is described for numerical-simulation studies on how Helmholtz resonance affects the interaction of active and nominally inactive micro-jet actuators with a laminar boundary layer. Two sets of numerical simulations were carried out. The first set models the interaction of an active actuator with the boundary layer. These simulations confirm that our criterion for Helmholtz resonance is broadly correct. When it is satisfied we find that the actuator cannot be treated as a predetermined wall boundary condition because the interaction with the boundary layer changes the pressure difference across the exit orifice thereby affecting the outflow from the actuator. We further show that strong inflow cannot be avoided even when the actuator is used in pressure-jump mode. In the second set of simulations two-dimensional Tollmien–Schlichting waves, with frequency comparable with, but not particularly close to, the Helmholtz resonant frequency, are incident on a nominally inactive micro-jet actuator. The simulations show that under these circumstances the actuators act as strong sources of 3D Tollmien–Schlichting waves. It is surmised that in the real-life aeronautical applications with turbulent boundary layers broadband disturbances of the pressure field, including acoustic waves, would cause nominally inactive actuators, possibly including pulsed jets, to act as strong disturbance sources. Should this be true it would probably be disastrous for engineering applications of such massless microjet actuators for flow control.  相似文献   

16.
合成射流技术及其在流动控制中应用的进展   总被引:35,自引:0,他引:35  
罗振兵  夏智勋 《力学进展》2005,35(2):221-234
流动控制是流体技术最主要的研究领域,21世纪的空气动力学将在流动控制领域取得重大突破; 合成射流是一种基于旋涡运动的零质量射流,是流动控制领域近10年来最热门活跃的流动主动控制技术.首先介绍了合成射流激励器及激励器的基本类型,并概括了激励器的主要发展方向,即宽频域、高动量、``强壮'的合成射流激励器和微小型激励器.尔后,对合成射流激励器工作原理、合成射流结构以及合成射流独特的流场特征和合成射流技术的特点进行了综述.最后着重对合成射流技术主要和潜在应用,如流动分离及气动力控制、射流矢量控制、增强掺混及加强传热和传质、抑制噪声、微流体控制、飞行控制以及粒子的散布控制、合成射流陀螺仪技术等进行了介绍和综述,同时对其在各应用领域的控制机理进行了归纳总结.   相似文献   

17.
Where turbulent liquid jets are used for cutting and mining purposes the pressure generated by impact must be maximized. Initial jet behaviour has an important influence on subsequent jet impact pressures at medium range. Nozzle wall boundary layer history has a strong influence on the initial jet, and certain boundary layer features can be linked to poor jet performance. The procedure outlined in this paper was developed to eliminate new nozzle designs or changes in operating conditions on the grounds of badly behaved nozzle boundary flow. The design procedure consists of a potential flow analysis and a boundary layer analysis coupled to empirical correlations for boundary layers in accelerated flows. The procedure is exemplified by application to the design of a nozzle to be used for the specific purpose of mining china clay.  相似文献   

18.
The effect of the aperture angle of a V-wing representing a waverider undersurface on the hypersonic waverider lift-drag ratio is investigated for two isoperimetric conditions. The calculation model for the aerodynamic loads on angular configurations makes allowance for viscous interaction on a certain range of flight and geometry parameters on which there is no separation of the boundary layer flow within the shock layer. It is shown that for given values of the lift coefficient and specific volume, the waverider with a V-wing-shaped undersurface can have a lift-drag ratio which considerably exceeds that of a waverider of delta planform with a plane undersurface.  相似文献   

19.
An experimental study of flow downstream of round, pitched and skewed wall-jets (vortex generating jets) is presented to illustrate the effects of changing the geometric inlet conditions of the jet-holes. In one case the jet-hole has a smoothly contoured inlet, and in the other the inlet was a sharp-edged, sudden contraction. The test region geometry, mean jet flow and cross-flow conditions were otherwise identical. In both cases, dominant streamwise vortex structures are seen in the boundary layer downstream; the flow and turbulence is nearly the same in the far-field starting downstream of x/D=5. In the near-field, for x/D<5, there are significant differences; turbulence levels are higher, and the start of the dominant vortex shape is less clear for the sharp-edged case. This is believed to be the result of flow separation and free shear layer instability inside the jet-hole which are not present for the smoothly contoured case.  相似文献   

20.
The near field dynamics of transitional buoyant reactive jets established on noncircular geometries, including a rectangular nozzle with an aspect ratio of 2:1 and a square nozzle with the same cross-sectional area, are investigated by three-dimensional spatial direct numerical simulations. Without applying external perturbations at the inflow boundary, large vortical structures develop naturally in the flow field due to buoyancy effects. Simulation results and analysis describe the details and clarify mechanisms of vortex dynamics of the noncircular buoyant reactive jets. The interaction between density gradients and gravity initiates the flow vorticity. Among the major vorticity transport terms, the gravitational term mainly promotes flow vorticity in the cross-streamwise direction. For the baroclinic torque, it can either create or destroy flow vorticity depending on the local flow structure. The vortex stretching term has different effects on the streamwise and cross-streamwise vorticity. Streamwise vorticity is mainly created by vortex stretching, while this term can either create or destroy cross-streamwise vorticity. Under the coupling effects of buoyancy and noncircular nozzle geometry, three-dimensional vortex interactions lead to the transitional behavior of the reactive jets. Simulations also show that the rectangular jet is more vortical than the square jet. The rectangular jet has a stronger tendency of transition to turbulence at the downstream due to the aspect ratio effect. Mean flow property calculations show that the rectangular buoyant reactive jet has a higher entrainment rate than its square counterpart. Received 13 December 2000 and accepted 24 July 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号