首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
This work is concerned with the development of a numerical method capable of simulating two-dimensional viscoelastic free surface flows governed by the non-linear constitutive equation PTT (Phan-Thien–Tanner). In particular, we are interested in flows possessing moving free surfaces. The fluid is modelled by a marker-and-cell type method and employs an accurate representation of the fluid surface. Boundary conditions are described in detail and the full free surface stress conditions are considered. The PTT equation is solved by a high order method which requires the calculation of the extra-stress tensor on the mesh contour. The equations describing the numerical technique are solved by the finite difference method on a staggered grid. In order to validate the numerical method fully developed flow in a two-dimensional channel was simulated and the numerical solutions were compared with known analytic solutions. Convergence results were obtained throughout by using mesh refinement. To demonstrate that complex free surface flows using the PTT model can be computed, extrudate swell and a jet flowing onto a rigid plate were simulated.  相似文献   

2.
3.
This paper describes the use of a rotating all-mirror image derotator system, high-speed video and particle image velocimetry (PIV) to visualise and quantitatively examine the flow patterns between the blades of a centrifugal impeller. The flow field relative to the moving centrifugal impeller is presented. Published online: 13 December 2002  相似文献   

4.
A micro–macro approach based on combining the Brownian configuration fields (BCF) method [M.A. Hulsen, A.P.G. van Heel, B.H.A.A. van den Brule, Simulation of viscoelastic flow using Brownian configuration fields, J. Non-Newtonian Fluid Mech. 70 (1997) 79–101] with an Arbitrary Lagrangian–Eulerian (ALE) Galerkin finite element method, using elliptic mesh generation equations coupled with time-dependent conservation equations, is applied to study slot coating flows of polymer solutions. The polymer molecules are represented by dumbbells with both linear and non-linear springs; hydrodynamic interactions between beads are incorporated. Calculations with infinitely extensible (Hookean) and pre-averaged finitely extensible (FENE-P) dumbbell models are performed and compared with equivalent closed-form macroscopic models in a conformation tensor based formulation [M. Pasquali, L.E. Scriven, Free surface flows of polymer solutions with models based on the conformation tensor, J. Non-Newtonian Fluid Mech. 108 (2002) 363–409]. The BCF equation for linear dumbbell models is solved using a fully implicit time integration scheme which is found to be more stable than the explicit Euler scheme used previously to compute complex flows. We find excellent agreement between the results of the BCF based formulation and the macroscopic conformation tensor based formulation. The computations using the BCF approach are stable at much higher Weissenberg numbers, (where λ is the characteristic relaxation time of polymer, and is the characteristic rate of strain) compared to the purely macroscopic conformation tensor based approach, which fail beyond a maximum Wi. A novel computational algorithm is introduced to compute complex flows with non-linear microscopic constitutive models (i.e. non-linear FENE dumbbells and dumbbells with hydrodynamic interactions) for which no closed-form constitutive equations exist. This algorithm is fast and computationally efficient when compared to both an explicit scheme and a fully implicit scheme involving the solution of the non-linear equations with Newton’s method for each configuration field.  相似文献   

5.
Two industrially important free surface flows arising in polymer processing and thin film coating applications are modelled as lid-driven cavity problems to which a creeping flow analysis is applied. Each is formulated as a biharmonic boundary-value problem and solved both analytically and numerically. The analytical solutions take the form of a truncated biharmonic series of eigenfunctions for the streamfunction, while numerical results are obtained using a linear, finite-element formulation of the governing equations written in terms of both the streamfunction and vorticity. A key feature of the latter is that problems associated with singularities are alleviated by expanding the solution there in a series of separated eigenfunctions. Both sets of results are found to be in extremely good agreement and reveal distinctive flow transformations that occur as the operating parameters are varied. They also compare well with other published work and experimental observation.  相似文献   

6.
A new adaptive quadtree method for simulating laminar viscous fluid problems with free surfaces and interfaces is presented in this paper. The Navier–Stokes equations are solved with a SIMPLE‐type scheme coupled with the Compressive Interface Capturing Scheme for Arbitrary Meshes (CICSAM) (Numerical prediction of two fluid systems with sharp interfaces, Ph.D. Thesis, Imperial College of Science, Technology and Medicine, London, 1997) volume of fluid (VoF) method and PLIC reconstruction of the volume fraction field during refinement and derefinement processes. The method is demonstrated for interface advection cases in translating and shearing flow fields and found to provide high interface resolution at low computational cost. The new method is also applied to simulation of the collapse of a water column and the results are in excellent agreement with other published data. The quadtree grids adapt to follow the movement of the free surface, whilst maintaining a band of the smallest cells surrounding the surface. The calculation is made on uniform and adapting quadtree grids and the accuracy of the quadtree calculation is shown to be the same as that made on the equivalent uniform grid. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

7.
The loss of stability of a plane-parallel incompressible viscous heat-conducting fluid flow in a horizontal layer subject to a longitudinal temperature gradient is considered. The lower surface of the layer is assumed to be rigid, while the upper one is free with a surface tension coefficient depending linearly on temperature. Both boundaries are assumed to be thermally-insulated. The critical value of the temperature gradient as a function of other relevant parameters is determined by analyzing the spectrum of the linearized problem. Secondary flows arising after the onset of instability are determined from an analysis of the full nonlinear problem using the expansion of the solution in a power series in terms of a supercritical state parameter in the vicinity of the bifurcation point. Three types of secondary flows are studied: plane two-dimensional waves propagating along the temperature gradient; plane waves travelling at a certain angle to the gradient; and three-dimensional waves propagating along the gradient. A numerical method of problem solution, based on the polynomial approximation, is described.Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 5, pp. 85–98, September–October, 1994.  相似文献   

8.
This paper proposes a hybrid volume-of-fluid (VOF) level-set method for simulating incompressible two-phase flows. Motion of the free surface is represented by a VOF algorithm that uses high resolution differencing schemes to algebraically preserve both the sharpness of interface and the boundedness of volume fraction. The VOF method is specifically based on a simple order high resolution scheme lower than that of a comparable method, but still leading to a nearly equivalent order of accuracy. Retaining the mass conservation property, the hybrid algorithm couples the proposed VOF method with a level-set distancing algorithm in an implicit manner when the normal and the curvature of the interface need to be accurate for consideration of surface tension. For practical purposes, it is developed to be efficiently and easily extensible to three-dimensional applications with a minor implementation complexity. The accuracy and convergence properties of the method are verified through a wide range of tests: advection of rigid interfaces of different shapes, a three-dimensional air bubble's rising in viscous liquids, a two-dimensional dam-break, and a three-dimensional dam-break over an obstacle mounted on the bottom of a tank. The standard advection tests show that the volume advection algorithm is comparable in accuracy with geometric interface reconstruction algorithms of higher accuracy than other interface capturing-based methods found in the literature. The numerical results for the remainder of tests show a good agreement with other numerical solutions or available experimental data. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
Ezerskii  A. B. 《Fluid Dynamics》1983,18(3):475-476
When wave packets of small but finite amplitude propagate in liquids and gases average fields (average flows, average displacements of the interfaces between different liquids, etc.) arise because of the nonlinearity of the media [l, 2], their amplitude being proportional to the square of the wave amplitude. The present paper is an investigation of such fields that arise when a packet of surface waves propagates on a horizontally inhomogeneous flow. It is shown that the average flows induced by the waves can strongly destabilize or stabilize the main flow.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 162–163, May–June, 1983.  相似文献   

10.
New finite elements have been developed to simulate steady and unsteady two-dimensional free surface flows. The depth-averaged velocity components with the free surface elevation have been used as independent variables in the model. The differences between the various elements presented lie in the choice of velocity approximation. The Newton–Raphson method has been used to solve the non-linear system of equations. Emphasis is put on bench-mark examples to assess the accuracy and efficiency of the elements. A simple stable new element tested herein shows promising advantages for industrial finite element codes.  相似文献   

11.
Vortex methods have found wide applications in various practical problems. The use of vortex methods in free surface flow problems, however, is still very limited. This paper demonstrates a vortex method for practical computation of non-linear free surface flows produced by moving bodies. The method is a potential flow formulation which uses the exact non-linear free surface boundary condition at the exact location of the instantaneous free surface. The position of the free surface, on which vortices are distributed, is updated using a Lagrangian scheme following the fluid particles on the free surface. The vortex densities are updated by the non-linear dynamic boundary condition, derived from the Euler equations, with an iterative Lagrangian numerical scheme. The formulation is tested numerically for a submerged circular cylinder in unsteady translation. The iteration is shown to converge for all cases. The results of the unsteady simulations agree well with classical linearized solutions. The stability of the method is also discussed.  相似文献   

12.
The finite element method is employed to investigate time-dependent liquid metal flows with free convection, free surfaces and Marangoni effects. The liquid circulates in a two-dimensional shallow trough with differentially heated vertical walls. The spatial formulation incorporates mixed Lagrangian approximations to the velocity, pressure, temperature and free surface position. The time integration is performed with the backward Euler and trapezoid rule methods with step size control. The Galerkin method is used to reduce the problem to a set of non-linear equations which are solved with the Newton–Raphson method. Calculations are performed for conditions relevant to the electron beam vaporization of refractory metals. The Prandtl number is 0·015 and Grashof number are in the transition range between laminar and turbulent flow. The results reveal the effects of flow intensity, surface tension gradients, mesh refinement and time integration strategy.  相似文献   

13.
Computing free surface gravity flows involves basically two coupled problems, namely, the location of the free surface position and the determination of the internal flow field (for assumed values H0 and Q of the total head and discharge, respectively). Solution techniques are invariably based on iterative procedures, but those that iterate between the two coupled problems may become unstable. In this paper we present a computational method in which the coupling is kept throughout the process of iteration. This is achieved by converting the coupled problems (by means of the Kantorovich method) into the single problem of finding a set of streamlines, including that of the free surface. These streamlines are moved (iteratively) to satisfy the stationary conditions of the governing variational principle. The algorithm is very stable and converges rapidly. It is also easy to implement to solve various types of steady flows with a free surface under gravity.  相似文献   

14.
Summary A boundary integral equation method is proposed for the solution of viscous recirculating flows with free surfaces. In particular the method is applied to thermocapillary convection and to drop formation, both in micro-gravity conditions, the latter to test its capability to handle real unsteady problems.The presence of non linear terms in Navier-Stokes equations leads to a volume integral, which has to be approximated by a linearization procedure.Several numerical results for thermocapillary flows, both with fixed and moving free surface, are discussed in comparison with previously obtained finite difference solutions. Some preliminary results, and in particular the time evolution of the free surface shape, are also presented for the drop formation problem. Only plane two dimensional fields are considered for both problems.
Sommario Si propone un metodo basato sulla soluzione di equazioni integrali di contorno per flussi viscosi con superficie libera. Tale metodo è applicato allo studio della convezione termocapillare ed al processo di formazione di una goccia, entrambi in condizioni di microgravità. La presenza dei termini non lineari nell'equazione di Navier-Stokes comporta un integrale di volume che viene approssimato mediante un processo di linearizzazione.Risultati numerici per flussi termocapillari con superficie libera sia fissa che mobile sono confrontati con altri ottenuti in precedenza con un metodo alle differenze finite. Si presentano inoltre alcuni risultati preliminari sul problema della formazione della goccia ed in particolare l'evoluzione nel tempo della configurazione geometrica della superficie libera. Nei due casi si analizzano solo campi bidimensionali.


Presented at the VII National Conference AIDAA, Naples, September 1983.

In leave of absence from Tianjin University, China.  相似文献   

15.
Imaging methods developed to characterise the oscillatory free surface of rapid flows are presented and applied to torrential currents over sediment antidunes. The aim is to obtain high-resolution relief maps of the free surface topography. Two measurement principles are tested, both based on the imaging of floating tracers dispersed on the rapidly flowing surface. The first technique involves direct stereoscopic measurements. The second technique is indirect, and exploits a Bernoulli relation to derive surface elevations from the horizontal velocity field acquired using a single camera. Special attention is paid to error estimation and control. Relief maps obtained for various bedform patterns are presented, allowing comparison between the two techniques.  相似文献   

16.
In this paper, an efficient numerical method for unsteady free surface motions, with simple geometries, has been devised. Under the potential flow assumption, the governing equation of free surface flows becomes a Laplace equation, which is treated here by means of a series expansions of the velocity potential. The free surface is represented with a height function. The present method is applied to surface gravity waves to test the stability and accuracy of the method. To show the versatility of the method, a model for a dip formation is considered. © 1998 John Wiley & Sons, Ltd.  相似文献   

17.
18.
In this article, a priori error estimate is employed to improve the efficiency of simulating free surface flows with discrete least-squares meshless (DLSM) method. DLSM is a fully least-squares approach in which both function approximation and the discretisation of the governing differential equations is carried out using a least-squares concept. The meshless shape functions are derived using the moving least-squares (MLS) method of function approximation. The discretised equations are obtained via a discrete least-squares method in which the sum of the squared residuals are minimised with respect to unknown nodal parameters. The governing equations of mass and momentum conservation are solved in a Lagrangian form using a pressure projection method. The proposed simulation strategy is composed of error estimation and a node moving refinement method. Since in free surface problems, the position of the free surface is of primary interest, a priori error estimate is used which automatically associates higher error to the nodes near the free surface. The node moving refinement method is used to construct a nodal configuration with dense nodal arrangement near the free surface. Four test problems namely dam break, evolution of a water bubble, solitary wave propagation and wave run-up on slope are investigated to test the ability and efficiency of the proposed efficient simulation method.  相似文献   

19.
The focus of this paper is the analysis of spatially two-dimensional non-linear free surface problems. The critical aspects of the problem concern the treatment of the non-linear free surface, the body boundary condition for large motions and the imposition of suitable radiation conditions. To address such complexities, time domain simulation was chosen as the method of analysis. With the use of a finite domain for simulation, a major concern is with the radiation condition to be applied at the open or truncation boundary. For the two-dimensional problem at hand, no theoretical radiation conditions are known to exist. An extension of the Orlanski open boundary condition, based on phase velocity determination at the free surface, is proposed. Three categories of problems were analysed using numerical simulation-namely, freely moving steep waves, waves over a submerged body and forced body motion. Simulation results have been compared with linear theory and experiments.  相似文献   

20.
In this paper we present a finite difference method for solving two-dimensional viscoelastic unsteady free surface flows governed by the single equation version of the eXtended Pom-Pom (XPP) model. The momentum equations are solved by a projection method which uncouples the velocity and pressure fields. We are interested in low Reynolds number flows and, to enhance the stability of the numerical method, an implicit technique for computing the pressure condition on the free surface is employed. This strategy is invoked to solve the governing equations within a Marker-and-Cell type approach while simultaneously calculating the correct normal stress condition on the free surface. The numerical code is validated by performing mesh refinement on a two-dimensional channel flow. Numerical results include an investigation of the influence of the parameters of the XPP equation on the extrudate swelling ratio and the simulation of the Barus effect for XPP fluids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号