首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary A theoretical treatment is presented which considers differences between the composition of the mobile phase and solvents that are incorporated into the bonded phase via preferential sorption. Equations are derived and used to analyze retention data for various homologs chromatographed under reversed-phase conditions using alkyl bonded phases and combinations of water-methanol, water-acetonitrile and watertetrahydrofuran as mobile phases. In the case of water-methanol the surface phase and bulk mobile phase compositions are similar. However, significant differences in composition between the two phases are observed when binary combinations of water-acetonitrile and water-tetrahydrofuran are used as the cluents.  相似文献   

2.
Summary Reversed-phase liquid chromatographic retention characteristics for the sixteen acyclic C1−C5 N-alkylbenzamide congeners were measured on various branched and linear, alkyl bonded hydrocarbon stationary phases. Retention factors, k′, were determined in acetonitrile-water mobile phase compositions on ethyl, n-octyl, n-dodecyl, n-octadecyl, 1-ethyladamantyl, 4-butyloctyl, and 2,4,4-trimethylpentyl stationary phases. Statistical analysis of the two main effects investigated — type of stationary phase and percentage of organic modifier (acetonitrile) in the mobile phase — described greater than ninety percent of the variability in the data for most of the comparisons. Selectivity effects due to variation in the mobile phase dominated the results.  相似文献   

3.
Eleven cyanopropyl ("cyano") columns were characterized by means of a relationship developed originally for alkyl-silica columns. Compared to type-B alkyl-silica columns (i.e., made from pure silica), cyano columns are much less hydrophobic (smaller H), less sterically restricted (smaller S*), and have lower hydrogen-bond acidity (smaller A). Because sample retention is generally much weaker on cyano versus other columns (e.g., C8, C18), a change to a cyano column usually requires a significantly weaker mobile phase in order to maintain comparable values of k for both columns. For this reason, practical comparisons of selectivity between cyano and other columns (i.e., involving different mobile phases for each column) must take into account possible changes in separation due to the change in mobile phase, as well as change in the column.  相似文献   

4.
K. Jinno  M. Okamoto 《Chromatographia》1984,18(12):677-679
Summary The relationship between the retention of PAHs having various molecular sizes and the carbon contents (%) of bonded stationary phases with various types of ligands were investigated. The examined stationary phases were phenyl, diphenyl, triphenyl and benzyl-bonded silicas. The data indicated that sometimes it is not true that the retention of any solute relates linearly to the carbon content of the stationary phase. As the result, it is suggested that the pore size distribution of the silica support, the bulkiness of the ligand bonded to the silica and the molecular size of solute should also be considered before any precise statement can be made.  相似文献   

5.
Summary It is shown theoretically that when the concentration of organic solvent in the mobile phase increases, or solute size decreases, log k values of small solutes in reversed-phase liquid chromatography (RPLC) will tend to have a minimum value called the convergence point. A theoretical model for evaluating the convergent coordinates of small solutes is presented by using a stoichiometric displacement model for retention (SMDR). The physical meaning of the coordinates of each kind of convergence are also elucidated. The convergence points have either two-dimensional coordinates with a common ordinate (the logarithm of the phase ratio of the column, log ) or threedimensional corrdinates with two common axes: — log and the logarithm of the molar concentration of the pure displacing agent in mobile phase, log aD. The other axis relates to the nature of the solutes, such as carbon number of a homolog, van der Waal's surface area, hydrophobic fragment constant etc. for the latter and those and/or concentration axis for the former. The model was tested with published data and found to give a good fit.  相似文献   

6.
P. L. Zhu 《Chromatographia》1986,21(4):229-233
Summary An equation is derived which can describe how the retention of solutes is influenced by the composition of the mobile phase in reversed-phase liquid chromatography, the retention of solutes in alkyl bonded stationary phase regarded as the complexation between solute molecule and the active sites on the surface of the stationary phase. When the stationary phase is not fully saturated by the organic modifier, the activity of the active sites, the activity coefficient of the adsorbed solute as well as the activity coefficient of the solute in the mobile phase depend on the composition of the mobile phase. However, when the stationary phase is fully saturated, the composition of the mobile phase mainly influences the activity coefficient of the solute in the mobile phase. In addition, the selectivity of retention is discussed in terms of the derived equation.  相似文献   

7.
Summary The retention behavior of 15 peropyrene-type polycyclic aromatic hydrocarbons was investigated on various bonded stationary phases in reversed-phase liquid chromatography. On diphenyl and naphthylethyl bonded phases, high correlations were obtained between the molecular polarizability of solutes and their retention. However, very low or no correlations were found on various octadecyl bonded phases. These facts are discussed by using the electrostatic interaction concept between the solutes and the stationary phase. We conclude that these observations are due to two reasons: the difference in the degree of planarity of polycyclic aromatic hydrocarbons and the high ability of planarity recognition of octadecyl bonded phases.  相似文献   

8.
Summary The temperature-dependency of the separation of fullerenes in liquid chromatography (LC) has been examined using various alkyl bonded stationary phases. It has been found that a maximum retention temperature exists with long alkyl bonded stationary phases, whereas there is no similar effect with the newly synthesized alkyl bonded phases which have two phenyl groups at the base of the bonded phase. The interpretation of the retention behavior of fullerenes in the low temperature region on alkyl bonded stationary phases is discussed using information obtained by CP-MAS solid-state NMR spectroscopy and LC.  相似文献   

9.
T. Kowalska 《Chromatographia》1990,29(7-8):389-394
Summary In our previous publication we have introduced a new model of solute retention in RP-HPLC systems with ternary mobile phases of the B+AB1+AB2 type (B: acetonitrile or tetrahydrofuran; AB1: methanol; AB2: water). That model proposed no stoichiometric differentiation between acetonitrile and tetrahydrofuran, alternatively present in the solvent system; moreover, it made some very rough assumptions only as to the intermolecular interactions among the mobile phase constituents.This paper introduces a significant refinement to the already established retention model, which is based on the simple quantitative relationships between acetonitrile and tetrahydrofuran, and the remaining components of the ternary liquid system. The refined model is tested with same experimental data.  相似文献   

10.
Summary Members of three homologous series and five non-homologous solutes with various functional groups were chromatographed on a series of well-characterized C18 reversed stationary phases with a range of methanol-water mobile phases. Measured capacity factors of solutes were correlated with the concentration of C18 ligands on the stationary phase. A linear relationship with the slope depending on a solute molecular structure and the volume fraction of methanol in the mobile phase was obtained. A method for the evaluation of phase ratio is also proposed. Presented at the 17th International Symposium on Chromatography, September 25–30, 1988, Vienna, Austria.  相似文献   

11.
Summary Three different phenyl phases were prepared. The amount of organic moiety bound on silica support was determined from thermogravimetric curves of the modified silica gel. The specific surface areas of gels were obtained from nitrogen sorption measurement at –196°C. The effect on separation and selectivity of the different bonded-phenyl functional groups was studied. The selectivity of the phenyl-bonded silica gels was examined and compared with octadecyl (ODS) silica in liquid chromatography. Corresponding to the high surface concentration of functional groups, the capacity factors of solutes, normalized to unit surface area of the adsorbent, k/SBET were found to decrease in the sequence phenylmethyl>diphenyl>triphenyl. Polar solutes are retained in greater extent on the phenyl phases than on the ODS phase.  相似文献   

12.
Summary N-Protected single amino acid residues have been chemically bound to aminopropylated silica gel to give chiral HPLC column packings. Surface coverages have been determined by both elemental and aminoacid analyses. In addition, the nature of the surface-bound groups has been studied by reflectance fourier transform infrared (FTIR) spectroscopy. The resolution of a range of racemic mixtures has been achieved using the column packings.  相似文献   

13.
Summary The validity of a method for characterizing stationary phases for reversed-phase, liquid chromatography, based on the use of homologous series, has been evaluated. The method is based on a retention model which describes the dependence of the logarithm of the capacity factor on mobile phase composition and the carbon number of specific homologous series. A first-order as well as a second-order version of this model was investigated. The second-order model proved to be a significant improvement on the first-order model, even for smaller mobile-phase ranges. Nevertheless both models showed a significant lack of fit, reflecting the incompleteness of these models. Therefore, it is very questionable whether this method is suitable to describe HPLC-column characteristics like hydrophobicity and hydrophylicity.  相似文献   

14.
Summary Using the concept of an effective concentration a method is proposed for predicting retention in liquid chromatography with multicomponent mobile phases based on experiments with corresponding binary ones. The method is verified for normal and reversed-phase systems with ternary mobile phases and agrees closely with experimental data.  相似文献   

15.
Summary The synthesis of several electron-acceptor stationary phases has been reviewed the materials evaluated for their capacity to separate polyaromatic hydrocarbons (PAHs). Chemically bonded phases were obtained by the same procedure; the organosilane moiety is monofunctional and the HPLC behaviour is compared under identical conditions. Examples of PAHs separations are given.Presentedat the 13th International Symposium on Polynuclear Aromatic Hydrocarbons, Bordeaux, October 1–4, 1991.  相似文献   

16.
Summary To calculate retention in reversed-phase, high-performance liquid chromatography a method based on the molecular structure of the analyte and the characteristics of sorbents and mobile phases has been employed. Characteristics of different ODS-columns in water-methanol eluents have been determined.  相似文献   

17.
Summary An interpretive optimization procedure in which pH can be one of the variables is presented with the emphasis on optimizing separations. When varying the pH in reversed-phase liquid chromatography the retention of ionogenic solutes will change. Thus, the selectivity between ionogenic and neutral solutes or between ionogenic solutes mutually can be optimized. However, pH also greatly affects the efficiency (plate count) and peak shape (asymmetry). Optimum selectivity (i.e. large differences in retention times) may be observed under conditions where peaks are broad and asymmetrical. Thus, it is essential to simultaneously consider retention, peak width and peak shape and their effects on separation (effective resolution) in pH-optimization studies. A procedure in which this is done is presented and applied to optimizing the separation of a synthetic mixture of selected pharmaceuticals. After initial experiments to establish the parameter space (boundaries for pH and binary methanol — water composition), twelve experiments are performed according to a 3×4 experimental design. At each loaction the retention, peak height, peak area and peak symmetry are recorded for each solute. These data are then used to build models for each of the four characteristics and for each solute. From this set of models the response surface, describing the quality of separation as a function of pH and composition, can be calculated. A variety of optimization criteria (quantifying quality of separation) can be used. The optimum corresponds to the highest point on the response surface.  相似文献   

18.
19.
Summary The retention data of isomeric xylenes, ethyltoluenes and diethylbenzenes, and of mesitylene, benzene, toluene and ethylbenzene were obtained on a reversedphase column using methanol-water and ethanol-water mobile phases at four different temperatures. This database was used to relate the dependence of solute retention and resolution on the polarity of the mobile phase, solute dipole moment, and column temperature. The additivity of the free energy of the transfer of solute molecules or solute segments from the stationary phase to the mobile phase, was examined for the isomeric compounds. For this, the logarithm of the net retention volume was substituted for the free energy. Deviations from the additivity of free energies indicate that the separation of isomeric substituted alkylbenzenes is governed by their differential interactions with both the polar mobile phase and nonpolar stationary phase. Among the disubstituted alkylbenzenes,ortho-isomers favor the mobile phase more andpara-isomers tend to prefer the stationary phase more. Themeta-isomers are found to follow the additivity rule closely. These trends are amplified as the polarity of the mobile phase is increased indicating that these isomers are resolved better in water-rich mobile phases. These findings are substantiated by analogous results from gas-liquid chromatographic retention data, estimation of dipole moment effects, and examination of the entropic and enthalpic contributions to the net retention volume.Dedicated to Professor Leslie S. Ettre on the occasion of his 70th birthday.  相似文献   

20.
Four retention models for the effect of aliphatic alcohol additives on the retention of analytes in reversed-phase liquid chromatography have been developed following either a semi-thermodynamic treatment or an empirical approach. Their performance was tested using the experimental retention times of six non-polar analytes (alkylbenzenes) and ten o-phthalaldehyde derivatives of amino acids under different isocratic chromatographic runs when a small amount of ethanol, 1-propanol, 1-butanol, 1-pentanol, 1-hexanol or 1-heptanol was added to methanol/water mixtures containing a constant amount of methanol. It was shown that for the structurally simple alkylbenzenes all the models can be adopted for retention prediction with good results. In contrast, just one out of four models, that with the fewest approximations, predicts satisfactorily the retention properties of amino acids derivatives. However, the most interesting feature is that this model can predict the effect of an alcohol-additive on the retention properties of solutes, even if this additive was not used in chromatographic runs done for the fitting procedure, provided that it belongs to the same homologous series of alkanols. This feature is also observed in all models described the retention of alkylbenzenes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号