首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
The preparation of synthesis gas from carbon dioxide reforming of methane (CDR) has attracted increasing attention. The present review mainly focuses on CDR to produce synthesis gas over Ni/MOx/Al2O3 (X = La, Mg, Ca) catalysts. From the examination of various supported nickel catalysts, the promotional effects of La2O3, MgO, and CaO have been found. The addition of promoters to Al2O3-supported nickel catalysts enhances the catalytic activity as well as stability. The catalytic performance is strongly dependent on the loading amount of promoters. For example, the highest CH4 and CO2 conversion were obtained when the ratios of metal M to Al were in the range of 0.04–0.06. In the case of Ni/La2O3/Al2O3 catalyst, the highest CH4 conversion (96%) and CO2 conversion (97%) was achieved with the catalyst (La/Al = 0.05 (atom/atom)). For Ni/CaO/Al2O3 catalyst, the catalyst with Ca/Al = 0.04 (atom/atom) exhibited the highest CH4 conversion (91%) and CO2 conversion (92%) among the catalysts with various CaO content. Also, Ni/MgO/Al2O3 catalyst with Mg/Al = 0.06 (atom/atom) showed the highest CH4 conversion (89%) and CO2 conversion (90%) among the catalysts with various Mg/Al ratios. Thus it is most likely that the optimal ratios of M to Al for the highest activities of the catalysts are related to the highly dispersed metal species. In addition, the improved catalytic performance of Al2O3-supported nickel catalysts promoted with metal oxides is due to the strong interaction between Ni and metal oxide, the stabilization of metal oxide on Al2O3 and the basic property of metal oxide to prevent carbon formation.  相似文献   

2.
The rise in the use of polycarbonate (PC) calls for the development of after-use treatments. In this work, we describe a process for obtaining bisphenol A (BPA), phenol and isopropenyl phenol (IPP) from PC by hydrolysis at temperatures between 300 and 500 °C. The experiments were carried out in a steam atmosphere in the presence of MgO, CaO, Mg(OH)2 or Ca(OH)2 as catalysts, respectively. The results were compared with the hydrolysis of PC in the absence of any catalysts. All of these catalysts accelerated the hydrolysis of PC drastically, with MgO and Mg(OH)2 being more effective than their Ca counterparts. The differences between oxides and hydroxides were negligible indicating the same mechanism for both, oxides and hydroxides. BPA was the main product at 300 °C, with a yield of 78% obtained in the presence of MgO. At 500 °C, BPA was mainly degraded to phenol and isopropenyl phenol (IPP). It can be shown that a combined process involving PC hydrolysis at 300 °C and BPA fission at 500 °C leads to high yields of phenol and IPP and the drastic decrease of residue.  相似文献   

3.
王公应 《高分子科学》2017,35(1):130-140
Mg-Al mixed oxides with different Mg/Al molar ratio were prepared by thermal decomposition of hydrotalcitelike precursors at 500 °C for 5.0 h and used as catalysts for the transesterification of diphenyl carbonate with 1,4-butanediol to synthesize high-molecular-weight poly(butylene carbonate) (PBC). The structure-activity correlations of these catalysts in this transesterification process were discussed by means of various characterization techniques. It was found that the chain growth for the formation of PBC can only be obtained through connecting ―OH and ―OC(C)OC6H5 end-group upon removing the generated phenol, and the sample with Mg/Al molar ratio of 4.0 exhibited the best catalytic performance, giving PBC with M w of 1.64 × 105 g/mol at 210 °C for 3.0 h. This excellent activity depended mainly on the specific surface area and basicity rather than pore structure or crystallite size of MgO.  相似文献   

4.
The Aldol condensation of furfural (Fur) with acetone (Ac) to 4-(2-Furyl)-3-buten-2-one (FAc) is one of the most important processes in the aqueous-reforming of oxygen-containing biomass derivatives and has been carried out in the presence of solid-base catalysts, calcined-rehydrated Layered Double Hydroxides (LDH). The Mg-Al Layered Double Hydroxides has been prepared by the coprecipitation, calcination and regeneration from mixed oxides by rehydration. The catalyst prepared with different Mg/Al molar ratios showed different catalytic performance and the best catalyst was with the Mg/Al molar ratio of 2.5. Phenol adsorption showed that the best catalyst had the largest numbers of accessible basic sites. The appropriate rehydration temperature and time for mixed oxides obtained by calcination were also investigated. The Mg-Al LDH catalysts can be regenerated by calcination at 773 K and rehydration in decarbonate water, but the regeneration is complex and incomplete. In addition, the catalyst calcined at high temperature also had activity, which was attributed to the formation of the Mg-Al spinels.  相似文献   

5.
Five hydrotalcites with Mg/Al molar ratio range of 3-15 were prepared. The structure and basicity of Mg-Al mixed oxides (Mg(Al)O) transformed from hydrotalcites were investigated by TPD, XPS, XRD, FT-IR and NMR techniques. The results of elemental analysis and XPS indicate that Al is enriched in the surface regions of Mg(Al)0, and its amount increases with the Mg/Al molar ratio and the calcination temperature. 27Al-MAS-NMR results show that Al exists in two chemical environments: tetrahedral aluminium (Al(t)) and octahedral aluminium (Al(o)) in Mg(Al)O. The amount of Al(t) increases with the Mg/Al molar ratio and the calcination temperature. It is assumed that Al(t) may be mainly from the surface Al. Temperature-programmed desorption (TPD) of CO2 shows that the number of basic sites of Mg(Al)O samples increases with the Mg/Al molar ratio, and the maximum number of basic sites is obtained for hydrotalcite calcined at 773 K. Infrared spectra of adsorbed CO2 and B(OCH3)3 reveal that there are two kinds of  相似文献   

6.
Mg-Zn-Al三金属类水滑石的合成及其复合氧化物的催化性能   总被引:4,自引:0,他引:4  
水滑石([Mg_6Al_2(OH)_(16)[CO_3·4H_2O)是一种类似于水镁石结构的层状阴离子黏土,其骨架为阳离子,层间为阴离子。如改变骨架中的金属阳离子或在层间引入不同的阴离子,就可形成各种新组成的类水滑石。水滑石对有机分子反应具有较高的催化活性和选择性,且可以作为复合氧化物催化剂的前体,应用广泛。它作为碱催化剂,可用于醇醛缩合;作为氧化还原催化剂,用于水煤气转化、NO的还原、甲烷氧化反应等犤1,2犦。作为一种具有特殊结构的化合物,各种双金属组分的水滑石或类水滑石的合成、性质与应用已受到广泛的重视犤3…  相似文献   

7.
The density and surface tension of melts of the systems CaO-FeO-Fe2O3 MgO at the temperature 1623 K, CaO-FeO-Fe2O3-ZnO at 1573 K, and CaO-Fe2O3-Cu2O at 1573 K were determined using the maximum bubble pressure method. The molar volume, the excess molar volume, and the excess surface tension were calculated on the basis of the obtained data. From these properties information on the interactions of components and possible chemical reactions between them was obtained. Due to the absence of silica and the low concentration of other network-forming oxides, only isolated FeO 4 5− tetrahedra and the CaO·FeO ionic pairs are formed in these basic melts, the donor of the oxygen atoms being either CaO, FeO, or both CaO+FeO oxides. Even the observed ternary interactions may be attributed to the formation of the anions FeO 4 5− only.  相似文献   

8.
《Solid State Sciences》2012,14(2):250-257
CO2 adsorption properties on Mg modified silica mesoporous materials were investigated. By using the methods of co-condensation, dispersion and ion-exchange, Mg2+ was introduced into SBA-15 and MCM-41, and transformed into MgO in the calcination process. The basic MgO can provide active sites to enhance the acidic CO2 adsorption capacity. To improve the amount and the dispersion state of the loading MgO, the optimized modification conditions were also investigated. The XRD and TEM characteristic results, as well as the CO2 adsorption performance showed that the CO2 adsorption capacity not only depended on the pore structures of MCM-41 and SBA-15, but also on the improvement of the dispersion state of MgO by modification. Among various Mg modified silica mesoporous materials, the CO2 adsorption capacity increased from 0.42 mmol g−1 of pure silica SBA-15 to 1.35 mmol g−1 of Mg–Al–SBA-15-I1 by the ion-exchange method enhanced with Al3+ synergism. Moreover, it also increased from 0.67 mmol g−1 of pure silica MCM-41 to 1.32 mmol g−1 of Mg–EDA–MCM-41-D10 by the dispersion method enhanced with the incorporation of ethane diamine. The stability test by 10 CO2 adsorption/desorption cycles showed Mg–urea–MCM-41-D10 possessed quite good recyclability.  相似文献   

9.
用于生物柴油清洁生产的磁性固体催化剂CaO/MgO/Fe_3O_4   总被引:3,自引:0,他引:3  
制备了具有磁性和催化活性的双功能催化剂CaO/MgO/Fe3O4,用于催化花生油酯交换制备生物柴油的清洁生产过程。对CaO/MgO/Fe3O4进行了XRD、TEM、FT-IR和磁性等表征分析,探讨了CaO/MgO/Fe3O4催化剂的重复利用性能。结果表明,用Mg(Ac)2溶液等体积浸渍磁性基质Fe3O4,在N2气氛中600℃焙烧2 h,可得到具有磁性的载体5%MgO/Fe3O4;再用Ca(Ac)2溶液等体积浸渍MgO/Fe3O4,并在N2气氛中700℃煅烧,得到具有磁性且催化活性较高的催化剂10%CaO/MgO/Fe3O4。该催化剂具有核壳结构,磁核平均直径约为35 nm。在催化剂用量10%,醇油摩尔比12∶1,反应温度65℃,反应2 h的条件下酯交换转化率可达90%以上。在磁场的吸引下该催化剂能快速与反应体系分离,催化剂回收率达90%。但CaO/MgO/Fe3O4重复利用性能较差,其原因是在搅拌反应过程中催化活性组分逐渐从催化剂上脱落所致。  相似文献   

10.
Thermal study and structural characterization of biological hydroxyapatite (HA) samples were done as well as their comparison with commercial and synthetic samples in this study. The X-ray micro analyser shows that all three samples of human teeth (HT1–HT3) contain two types of HA structures with different crystallite sizes, unlike sample of bovine thigh-bone (BTB). The bone sample was composed only of one HA phase with varied porosity. The molar Ca/P ratio in biological samples was lower compared to theoretical ratio for pure HA; moreover, in the case of teeth, Ca/P ratio varyies between the centre and the periphery of the cross-sectional samples. Thermogravimetry of the biological samples showed mass decreases—three regions for the bone and four regions for the teeth. In comparison, commercial HA has only two-step weight loss and synthetic HA three-step weight loss. After the calcination up to 1280 °C all the samples of teeth transformed into whitlockite, β-(Ca,Mg)3(PO4)2 (98 wt%) and 2 wt% HA. Besides, HT3 contained further trace amount of hilgenstockite (HIL, Ca4P2O9). The sample BTB partly transited from natural HA into HIL (6 wt%) and lime, CaO (14 wt%). X-ray powder diffraction (XRD) proved occurrence of HIL (9 wt%) beside stability part HA (91 wt%) in the commercial HA after thermal treatment but the synthetic HA composed from Ca3(PO4)2 (74 wt%) and HA (26 wt%).  相似文献   

11.
Reusability of two heterogeneous catalysts in ultrasound (US) assisted biodiesel production was investigated in comparison to each other. An ultrasound (US) generator (200 W, 20 kHz) equipped with a horn type probe (19 mm) was used. Regeneration experiments were planned according to second order central composite design (CCD) method. After the eighth use of the catalysts, biodiesel yield decreased from 99.1% to 90.4% for calcined calcite (CaO) and from 98.8% to 89.8% for calcined dolomite (CaO.MgO). Furthermore, regeneration of spent catalysts by calcination was investigated; optimum temperature and time were found as 750 °C and 90 min, lower than fresh catalyst preparation conditions. The regenerated catalysts were reused in a second process cycle; biodiesel yield was calculated as 97.2% for CaO and 96.5% for CaO.MgO. Finally, the process showed that calcination is an energetically favorable regeneration process of spent catalysts.  相似文献   

12.
Catalytic steam reforming of acetic acid and hydroxyacetone (acetol) as model compounds of the aqueous fraction of bio-oil (biomass derived pyrolysis liquids) was studied in fluidized bed reactor over Ni/Al catalysts modified with calcium or magnesium. Attrition tests showed that the use of small quantities of these promoters improved the mechanical strength of the reforming catalyst. An optimum Ca/Al molar ratio of 0.12 and a Mg/Al molar ratio of 0.26 leaded to attrition rates of 0.22 and 0.27 wt%/h, respectively. Steam reforming experiments were performed at 650 °C and a steam to carbon molar ratio (S/C) of 5.58. The promoted catalysts showed different acetic acid steam reforming activities depending on the Ca/Al or Mg/Al molar ratios. Magnesium modified catalysts with a Mg/Al molar ratios of 0.26 and 0.50 showed good performances with almost no activity loss with time in contrast to the calcium modified catalysts that showed higher CO and CH4 yields. The addition of calcium generated a NiO phase with less interaction with the support. The highest H2 yield and carbon conversion in acetic steam reforming were obtained by a magnesium promoted catalyst with a Mg/Al ratio of 0.26, while the nonpromoted Ni/Al catalyst showed the best performance in acetol steam reforming. Then, the nature of the organic compound influenced the performance of the different catalysts.  相似文献   

13.
14.
Conventional heating method and hydrothermal method were used for the synthesis of CaO nanoparticles and CaO/MgO nanocomposites under solvent control conditions. Ca(NO3)2 and Mg(NO3)2 were used as precursors, amyl alcohol as surface directing agent and NaOH as source of OH?. Different samples of CaO were prepared by conventional heating method in order to investigate the effect of calcination temperature and stirring time. Similarly two different kinds of sets of CaO as well as of CaO/MgO were synthesized under hydrothermal conditions for the investigation of effect of solvent and temperature on catalytic efficiency. Characterizations of these samples were carried out by Powder X-ray Diffractions (XRD), Thermo Gravimetric Analysis (TGA), Field Emission Scanning Electron Microscope (FESEM) Energy dispersive X-ray (EDX) and Fourier Transformed Infrared spectroscopy (FTIR). The synthesized samples of CaO and CaO/MgO were used to degrade methylene blue under UV-Visible conditions, which is an organic pollutant of waste from industries and causing serious health problems. First order data for degradation for methylene blue at λmax = 665 nm was used to quantify the degradation. Effect of solvent was found to be prominent in all samples. Similarly effect of temperature variation was also pronounced on catalytic efficiency as indicated by value of k.  相似文献   

15.
A novel ZnO/Ca(OH)2/KF solid base catalyst was prepared by the grinding method and applied to biodiesel synthesis by the transesterification of soybean oil. The effect of various parameters such as KF molar amount, calcination temperature, the amount of catalyst, molar ratio of methanol to oil, reaction temperature, and time on the activity of the catalyst were investigated. The catalysts were characterized by several techniques of thermogravimetry/derivative thermogravimetry, X–ray diffraction, Hammett indicator method, and scanning electron microscopy. The analysis results indicated that the KF interacted with Ca(OH)2 and formed KCaF3 phase before calcination of the catalyst. The formed KCaF3 crystal phase was the main catalytic active component for the catalyst activity. In addition, the basicity of ZnO/Ca(OH)2/KF was greatly influenced by the different calcination temperates, and the catalyst activity was correlated closely with the basicity. A desired biodiesel yield of 97.6 % was obtained at catalyst amount of 3 %, methanol/oil of 12:1, and reaction time of 1.5 h at 65 °C.  相似文献   

16.
The Co–Mg–Al mixed metal oxides were prepared by calcination of co-precipitated hydrotalcite-like precursors at various temperatures (600–800 °C), characterised with respect to chemical (AAS) and phase (XRD) composition, textural parameters (BET), form and aggregation of cobalt species (UV–vis-DRS) and their redox properties (H2-TPR, cyclic voltammetry). Moreover, the process of thermal decomposition of hydrotalcite-like materials to mixed metal oxide systems was studied by thermogravimetric method combined with the analysis of gaseous decomposition products by mass spectrometry. Calcined hydrotalcite-like materials were tested as catalysts for methanol incineration. Catalytic performance of the oxides depended on cobalt content, Mg/Al ratio and calcination temperature. The catalysts with lower cobalt content, higher Mg/Al ratio and calcined at lower temperatures (600 or 700 °C) were less effective in the process of methanol incineration. In a series of the studied catalysts, the best results, with respect to high catalytic activity and selectivity to CO2, were obtained for the mixed oxide with Co:Mg:Al molar ratio of 10:57:33 calcined at 800 °C. High activity of this catalyst was likely connected with the presence of a Co–Mg–Al spinel-type phases, containing easy reducible Co3+ cations, formed during high-temperature treatment of the hydrotalcite-like precursor.  相似文献   

17.
KF/MgO 催化碳酸二甲酯与月桂醇酯交换合成碳酸二月桂酯   总被引:1,自引:0,他引:1  
 研究了 KF/MgO 催化剂对碳酸二甲酯 (DMC) 与月桂醇酯交换反应制备碳酸二月桂酯 (DDC) 的催化性能. 考察了催化剂 KF 负载量及焙烧温度对反应的影响, 并采用 X 射线衍射、傅里叶变换红外光谱、扫描电镜和 N2 吸附-脱附等对催化剂进行了表征. 结果表明, 催化剂 KF/MgO 在空气中较高温度焙烧后生成新相 K2MgF4 和 K2CO3, 它们为催化剂的主要活性组分. 催化性能测试结果表明, 该催化剂具有良好的催化活性, KF 的最佳负载量为 30%, 催化剂的最佳焙烧温度为 873 K. 还考察了反应条件对 KF/MgO 催化剂性能的影响. 当在反应物月桂醇:DMC 摩尔比 = 4, 催化剂用量为反应物总质量的 0.75%, 反应时间为 4 h 的条件下, 反应性能最佳, DMC 转化率和 DDC 收率分别为 86.7% 和 86.2%.  相似文献   

18.
Summary Magnesium oxide was produced through calcination of magnesite ore. A rehydration percentage of MgO to Mg(OH)2 of higher than 60% is obtained using calcination temperatures of 1000°C and below. At these temperatures medium reactive MgO was formed. The extend to which dead burnt MgO (obtained after calcination at 1200°C and higher) may be rehydrated is dependent on the calcination time, but even after 1 h and using magnesium acetate as a hydrating agent only 40% of the initial product has rehydrated to Mg(OH)2. After 4 and more hours of calcinations at 1200°C, a maximum of approximately 14% of the initial MgO is rehydrated back to Mg(OH)2. Thermogravimetric analysis was performed on the various compounds to determine the amounts of Mg(OH)2 that formed.  相似文献   

19.
MgAl and MgMAl oxides(M = Co,Ni and Cu) with a Mg:M:Al molar ratio = 4:1:1 were synthesized from the calcination of their corresponding layered double hydroxide(LDHs) precursors.Their catalytic activities were examined for the oxidation of ethylbenzene using tert-butylhydroperoxide(TBHP) as an oxidant.The oxidized product was mainly acetophenone.The catalytic activities were in the order of MgCuAl>MgNiAl~NiAl~MgCoAl~CoAl>CuAl>MgAl oxides.Reusability studies show that the catalysts are stable under the re...  相似文献   

20.
Egg shells were subjected to calcination–hydration–dehydration treatment to obtain CaO with high activity. The performance of CaO obtained from the calcination–hydration–dehydration treatment of egg shell and commercial CaO was tested for its catalytic activity via transesterification of waste frying oil (WFO). The results showed that the methyl ester conversion was 67.57% for commercial CaO and it was 94.52% for CaO obtained from the calcination–hydration–dehydration treatment of egg shell at a 5 wt% catalyst (based on oil weight), a methanol to oil ratio of 12:1, a reaction temperature of 65 °C and a reaction time of 1 h. The biodiesel conversion was determined by 1H Nuclear Magnetic Resonance Spectroscopy (1H NMR).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号