首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Superconductors put into rotation develope a spontaneous internal magnetic field (the “London field”). In this paper Ginzburg Landau equations for order parameter, field, and current distributions for superconductors in rotation are derived. Two simple examples are discussed: the massive cylinder and the “Little and Parks geometry”: a thin film of superconducting material deposited on a cylinder of normal material. A dependence of T c on rotational frequency is predicted. The magnitude of the effect is estimated and should be observable. Received 28 May 2001  相似文献   

2.
3.
Full k -maps of the electronic structure near the Fermi level of differently doped cuprates measured with angle-scanned photoelectron spectroscopy are presented. The valence band maximum of the antiferromagnetic insulator Sr2CuO2Cl2, which is taken as a representative of an undoped cuprate, and the Fermi surfaces of overdoped, optimally doped and underdoped Bi2Sr2CaCu2O8+δ high-temperature superconductors are mapped in the normal state. The results confirm the existence of large Luttinger Fermi surfaces at high doping with a Fermi surface volume proportional to (1+x), where x is the hole concentration. At very low doping, however, we find that this assumption based on Luttinger's theorem is not fulfilled. This implies a change in the topology of the Fermi surface. Furthermore the intensity of the shadow bands observed on the Fermi surface of Bi2Sr2CaCu2O8+δ as a function of the doping is discussed. Received 12 October 1999 and Received in final form 12 April 2000  相似文献   

4.
Thermal conductivity κ xx(T) under a field is investigated in d x2 - y2-wave superconductors and isotropic s-wave superconductors by the linear response theory, using a microscopic wave function of the vortex lattice states. To study the origin of the different field dependence of κxx(T) between higher and lower temperature regions, we analyze the spatially-resolved thermal conductivity around a vortex at each temperature, which is related to the spectrum of the local density of states. We also discuss the electric conductivity in the same formulation for a comparison. Received 8 December 2001 and Received in final form 20 March 2002 Published online 6 June 2002  相似文献   

5.
We report on the synthesis, structural and electrical characterization of high quality Tl2Ba2Ca1Cu2O8 (Tl-2212) superconducting films. The samples have been grown ex-situ on mm2 LaAlO3 (100) substrates by a combined approach of metal-organic chemical vapor deposition (MOCVD) and thallium vapor diffusion. The morphological and compositional nature of the c-axis oriented films has been investigated by SEM and X-ray analyses. Typical values of K and MA/cm2 at 77 K have been measured. Microwave measurements have been performed at f = 87 GHz inserting the film in a copper cavity and at f =1.5 GHz on patterned samples using a microstrip resonator technique. A penetration depth nm is evaluated by fitting the microwave data with phenomenological equations. The minimum value of the surface resistance measured at 4.2 K is 60 and 6 m at 1.5 GHz and 87 GHz respectively. The microwave data are described in the context of a modified two fluid model. An evaluation of the temperature dependence of the scattering rate has been performed through the simultaneous measurement of the surface resistance and the penetration depth. Received 16 December 1999 and Received in final form 17 March 2000  相似文献   

6.
We discuss the excess conductivity at nonzero frequencies in a superconductor above Tc within the Gaussian approximation. We focus the attention on the temperature range not too close to Tc: within a time-dependent Ginzburg-Landau formulation, we phenomenologically introduce a short wavelength cutoff (of the order of the inverse coherence length) in the fluctuational spectrum to suppress high momentum modes. We treat the general cases of thin wires, anisotropic thin films and anisotropic bulk samples. We obtain in all cases explicit expressions for the finite frequency fluctuational conductivity. The dc case directly follows. Close to Tc the cutoff has no effect, and the known results for Gaussian fluctuations are recovered. Above Tc, and already for ε = ln(T/T c) > 10-2, we find strong suppression of the paraconductivity as compared to the Gaussian prediction, in particular in the real part of the paraconductivity. At high ε the cutoff effects are dominant. We discuss our results in comparison with data on high-Tc superconductors. Received 19 March 2002 Published online 25 June 2002  相似文献   

7.
A quantitative analysis of a microscopic model for the intrinsic Josephson effect in high-temperature superconductors based on interlayer tunneling is presented both within a mean-field BCS evaluation and a numerically essentially exact Quantum Monte-Carlo study. The pairing correlations in the CuO2-planes are modelled by a 2D Hubbard model with attractive interaction, a model which accounts well for some of the observed features such as the short planar coherence length. The stack of Hubbard planes is arranged on a torus, which is threaded by a magnetic flux. The current perpendicular to the planes is calculated as a function of applied flux (i.e. the phase), and - after careful elimination of finite-size effects due to single-particle tunneling - found to display a sinusoidal field dependence in accordance with interlayer Josephson tunneling. Studies of the temperature dependence of the supercurrent reveal at best a mild elevation of the Josephson transition temperature compared to the planar Kosterlitz-Thouless temperature. These and other results on the dependence of the model parameters are compared with a standard BCS evaluation. Received: 24 February 1998 / Revised: 28 April 1998 / Accepted: 23 June 1998  相似文献   

8.
In this paper, we report on the sharp peak observed in the third harmonic voltage response generated by a bias sinusoidal current applied to several strips patterned in a YBa2Cu3O 7 - δ thin film and in two La2-xSrxCuO4 thin films, when the temperature is close to the normal-superconductor transition. The lambda-shaped temperature dependence of the third harmonic signal on the current characteristics is studied. Several physical mechanisms of third harmonic generation are examined. Received 13 November 2002 / Received in final form 21 February 2003 Published online 7 May 2003  相似文献   

9.
The dispersion relation of a doped hole in the half-filled 2D Hubbard model is shown to follow a law around the and points in the Brillouin zone. Upon addition of pair-hopping processes this dispersion relation is unstable towards a law. The above follows from T=0 Quantum Monte-Carlo calculations of the single particle spectral function on lattices. We discuss finite dopings and argue that the added term restores coherence to charge dynamics and drives the system towards a d x2 - y2 superconductor. Received 22 March 1999  相似文献   

10.
The fluctuation-induced magnetoconductivity of the Bi2Sr2Ca2Cu3O10+x phase is studied above zero-field critical temperature Tc(0) and for moderate magnetic fields. It is found that the Gaussian approximation for superconducting fluctuations underestimates the negative fluctuation magnetoconductance drastically in the Tc(0) < T < Tc(0) + 20 K temperature range. Taking into account the critical fluctuation contribution on the base of self-consistent Hartree approximation makes it possible to explain the data quantitatively in terms of the only Aslamazov-Larkin contribution for different magnetic fields and temperatures, consistently with the zero field data. Received 14 April 2000 and Received in final form 13 July 2000  相似文献   

11.
The pair-breaking effect and its impact on the properties of borocarbides is studied. The pair-breaking effect caused by localized magnetic moments drastically affects the superconducting properties. Interaction between the magnetic moments and the resulting ordering trend lead to a behavior entirely different from the conventional picture. The main focus is on the behavior of the upper () and lower () critical fields. In addition, the temperature dependence of several quantities (penetration depth, coherence length, etc.) has been calculated. The theory has been applied to the borocarbide LuNi2B2C and is in very good agreement with the recent experimental data. Received 29 June 1999  相似文献   

12.
We study theoretically the effect of impurity scattering in f-wave (or E2u) superconductors. The quasi-particle density of states of f-wave superconductor is very similar to the one for d-wave superconductor as in hole-doped high T c cuprates. Also in spite of anisotropy in Δ( ), both the reduced superfluid density and the reduced electronic thermal conductivity is completely isotropic. Received 11 October 2000  相似文献   

13.
The fact that the stripe phase and pseudogap in the cuprate superconductors occur in the same doping regime is emphasized. A model based on charge confinement in self-organized nanometer-scale stripe fragments is proposed to understand various generic features of the normal-state energy gap including the magnitude of the gap, its anti-correlation with the superconducting gap, and the d-wave symmetry in its -dependence. This model also provides a basis for understanding other anomalous normal-state properties such as the linear temperature dependence of electrical resistivity. Received 7 December 1998  相似文献   

14.
Simplified double-exchange model including transfer of the itinerant electrons with spin parallel to the localized spin in the same site and the indirect interaction J of kinetic type between localized spins is comprihensively investigated. The model is exactly solved in infinite dimensions. The exact equations describing the main ordered phases (ferromagnetic and antiferromagnetic) are obtained for the Bethe lattice with (z is the coordination number) in analytical form. The exact expression for the generalized paramagnetic susceptibility of the localized-spin subsystem is also obtained in analytical form. It is shown that temperature dependence of the uniform and the staggered susceptibilities has deviation from Curie-Weiss law. Dependence of Curie and Néel temperatures on itinerant-electron concentration is discussed to study instability conditions of the paramagnetic phase. Anomalous temperature behaviour of the chemical potential, the thermopower and the specific heat is investigated near the Curie point. It is found for J=0 that the system is unstable towards temperature phase separation between ferromagnetic and paramagnetic states. A phase separation connected with antiferromagnetic and the paramagnetic phases can occur only at . Zero-temperature phase diagram including the phase separation between ferromagnetic and antiferromagnetic states is given. Received 28 May 1999 and Received in final form 14 July 1999  相似文献   

15.
We derive the jump in the specific heat at T=T c for a superconductor in a non-Fermi liquid model. We took into consideration the two possible limits in this problem: the spin-charge separation model for a Fermi liquid and the usual non-Fermi liquid model which satisfies the homogeneity relation for the spectral function , ). We also derive the order parameter behavior for these two cases in the vecinity of the critical temperature. Received: 25 January 1998 / Revised: 25 March 1998 / Accepted: 25 March 1998  相似文献   

16.
Phase separation in the strongly correlated Falicov-Kimball model in infinite dimensions is examined. We show that the phase separation can occur for any values of the interaction constant J* when the site energy of the localized electrons is equal to zero. Electron-poor regions always have homogeneous state and electron-rich regions have chessboard state for , chessboard state or homogeneous state in dependence upon temperature for 0<J * <0.03 and homogeneous state for J * =0. For J * =0 and T=0, phase separation (segregation) occurs at .The obtained results are exact for the Bethe lattice with infinite number of the nearest neighbours. Received 1 December 1998 and Received in final form 12 April 1999  相似文献   

17.
The half-filled Hubbard model on the Bethe lattice with coordination number z=3 is studied using the density-matrix renormalization group (DMRG) method. Ground-state properties such as the energy per site E, average local magnetization , its fluctuations and various spin correlation functions are determined as a function of the Coulomb interaction strength U/t. The local magnetic moments increase monotonically with increasing Coulomb repulsion U/t showing antiferromagnetic order between nearest neighbors []. At large U/t, is strongly reduced with respect to the saturation value 1/2 due to exchange fluctuations between nearest neighbors (NN) spins [ for ]. shows a maximum for U/t=2.4-2.9 that results from the interplay between the usual increase of with increasing U/t and the formation of important permanent moments at large U/t. While NN sites show antiferromagnetic spin correlations that increase with increasing Coulomb repulsion, the next NN sites are very weakly correlated over the whole range of U/t. The DMRG results are discussed and compared with tight-binding calculations for U=0, independent DMRG studies for the Heisenberg model and simple first-order perturbation estimates. Received 8 February 1999 and Received in final form 14 June 1999  相似文献   

18.
As is well known, Zn-substitution of Cu in the Cu-O2 plane in the hole-doped high Tc cuprates provides a semi-quantitative test of underlying d-wave superconductivity. Here we complement this with a parallel study of Ni-substitution, which gives rise to weak scattering described with the Born approximation. Received: 7 November 1997 / Revised: 14 November 1997 / Accepted: 24 November 1997  相似文献   

19.
In order to clarify the nature of the additional phase transition at H 1 ( T ) < H c ( T ) of the layered antiferromagnetic (AF) insulator FeBr 2 as found by Aruga Katori et al. (1996) we measured the intensity of different Bragg-peaks in different scattering geometries. Transverse AF ordering is observed in both AF phases, AF I and AF II. Its order parameter exhibits a peak at T 1 = T ( H 1 ) in temperature scans and does not vanish in zero field. Possible origins of the step-like increase of the transverse ferromagnetic ordering induced by a weak in-plane field component when entering AF I below T1 are discussed. Received 27 September 1999 and Received in final form 6 December 1999  相似文献   

20.
We report a neutron scattering study of the instantaneous spin correlations in the two-dimensional spin S =5/2 square-lattice Heisenberg antiferromagnet Rb2MnF4. The measured correlation lengths are quantitatively described, with no adjustable parameters, by high-temperature series expansion results and by a theory based on the quantum self-consistent harmonic approximation. Conversely, we find that the data, which cover the range from about 1 to 50 lattice constants, are outside of the regime corresponding to renormalized classical behavior of the quantum non-linear model. In addition, we observe a crossover from Heisenberg to Ising critical behavior near the Néel temperature; this crossover is well described by a mean-field model with no adjustable parameters. Received: 3 March 1998 / Received in final form: 4 May 1998 / Accepted: 19 May 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号