首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
利用非自由Mn(Ⅱ)的径向波函数讨论Mn(Ⅱ)络合物的零场分裂,证实了零场分裂主要来自低对称晶场和旋-轨耦合作用的贡献。定量计算了三角、四角畸变时的|D|值,计算结果与实验值符合。  相似文献   

2.
By using the complete diagonalization of energy matrix of 3d1 ions in trigonal symmetry, the EPR parameters (g factors g( parallel), g( perpendicular) and zero-field splitting D) of the trigonal Ti3+-Ti3+ pair in beryl crystal are calculated. In the calculations, the exchange interaction in the Ti3+-Ti3+ pair is taken as the perturbation and the local trigonal distortion in the defect center is considered. The results (which are in agreement with the experimental values) are discussed.  相似文献   

3.
This paper reports on a novel application of a ligand field model for the detection of the local molecular structure of a coordination complex. By diagonalizing the complete energy matrices of the electron-electron repulsion, the ligand field and the spin-orbit coupling for the d5 configuration ion in a trigonal ligand field, the local distortion structure of the (MnO6)10- coordination complex for Mn2+ ions doped into CaCO3, have been investigated. Both the second-order zero-field splitting parameter b(0)2 and the fourth-order zero-field splitting parameter b(0)4 are taken simultaneously in the structural investigation. From the electron paramagnetic resonance (EPR) calculations, the local structure distortion, DeltaR=-0.169 A to -0.156 A, Deltatheta=0.996 degrees to 1.035 degrees for Mn2+ ions in calcite single crystal, DeltaR=-0.185 A to -0.171 A, Deltatheta=3.139 degrees to 3.184 degrees for Mn2+ ions in travertines, and DeltaR=-0.149 A to -0.102 A, Deltatheta=0.791 degrees to 3.927 degrees for Mn2+ ions in shells are determined, respectively. These results elucidate a microscopic origin of various ligand field parameters which are usually used empirically for the interpretation of EPR and optical absorption experiments. It is found that the theoretical results of the EPR and optical absorption spectra for Mn2+ ions in CaCO3 are in good agreement with the experimental findings. Moreover, to understand the detailed physical and chemical properties of the doped CaCO3, the theoretical values of the fourth-order zero-field splitting parameters b(0)4 for Mn2+ ions in travertines and shells are reported first.  相似文献   

4.
We report a new theoretical model that accounts for the unusual magnetic properties of the cyanide cluster ([MnII(tmphen)2]3[MnIII(CN)6]2) (tmphen = 3,4,7,8-tetramethyl-1,10-phenanthroline). The model takes into account (1) the spin-orbit interaction, (2) the trigonal component of the crystal field acting on the ground-state cubic (3)T(1) terms of the apical Mn(III) ions, and (3) the isotropic contribution to the exchange interaction between Mn(III) and Mn(II) ions. The ground state of the cluster was shown to be the state with the total angular momentum projection |M(J)| = 15/2; the energies of the low-lying levels obtained from this treatment increase with decreasing |M(J)| values, a situation that leads to a barrier for the reversal of magnetization (U(eff) approximately 30 cm(-1)). The new model explains the recently discovered single-molecule magnet behavior of the ([MnII(tmphen)2]3[MnIII(CN)6]2)in contrast to the traditional approach that takes into account only the ground-state spin (S) and a negative zero-field splitting parameter (D(S) < 0).  相似文献   

5.
From the high-order perturbation formulas of EPR parameters (zero-field splitting D, g factors gparallel, gperpendicular and hyperfine structure constants Aparallel, Aperpendicular) based on the two spin-orbit coupling parameter model for 3d3 ions in trigonal symmetry, the EPR parameters of Cr3+ and V2+ ions in HfS2 crystals are calculated. From the calculations, it is found that the local trigonal distortion angle theta of impurity center in HfS2:Cr3+ is smaller than that in HfS2:V2+. The dominant cause of the small zero-field splitting |D| and g-anisotropy |Deltag|=|gparallel-gperpendicular| in HfS2:Cr3+ (compound to HfS2:V2+) is due to the small local trigonal distortion angle theta rather than to the small impurity-ligand distance R in HfS2:Cr3+.  相似文献   

6.
Pulsed, high-field Zeeman spectra of the lowest singlet-to-triplet transition in single-crystal tetramethyl-1,3-cyclobutanedithione (TMCBDT) have been measured. The analysis of the spectra was performed using an extension of the theory of Castro and Hochstrasser which allows for an arbitrary alignment of the magnetic field with respect to the principal crystal axes. From this study we provide evidence that in TMCBDT (1) the lowest triplet is 3Au (D2h molecular symmetry). (2) only one spin-orbit coupling route is active. (3) a substantial zero-field splitting (2.5 ± 1.0 cm−1) is present. (4) the magnetic and molecular axes are rotated by 90°. and (5) the spin-orbit contribution to the triplet-state g values is small compared to its effect on the zero-field splitting parameters.  相似文献   

7.
The EPR parameters (zero-field splitting D and g factors g(parallel), g(perpendicular)) and the first excited state splitting Delta(2E) of the trigonal Cr3+-Vc centers (Vc denotes the cation vacancy in a C3 axis) in Cr3+-doped fluoroperovskites KMgF3, KZnF3, CsCdF3, CsCaF3, RbCdF3 and BaLiF3 are studied from the high-order perturbation formulas. From the studies, the defect structures (characterized by the vacancy-induced displacements Delta x1 of Cr3+ ion and Delta x2 of the three F- ion between Cr3+ and Vc) of these trigonal Cr3+-Vc centers are determined. It is found that the signs of displacements Delta x1 and Delta x2 are consistent with the expectations based on the electrostatic interactions, and the magnitudes of Delta x1 and Delta x2 for Cr3+ in the inverse perovskite BaLiF3 are larger than those for Cr3+ in the classical perovskites. The results are discussed.  相似文献   

8.
The magnetic behaviour of the coordination polymer [Co(C(3)H(3)N(2))(2)](n) has been investigated by magnetization and specific heat measurements. Low-field magnetic susceptibility shows the presence of two maxima at approximately 8 and 4 K (T(f)), which reflect short-range low-dimensional antiferromagnetic behaviour and the existence of a spin-glass-like state, respectively. The latter state was observed by magnetic irreversibility in both the zero-field cooled and field-cooled data, and was also confirmed by specific heat measurements. The magnetic specific heat (C(mag)) shows a lack of any long-range ordered peaks. Instead, a broad maximum near T(f) was observed in the C(mag)(T)/T-curve. Below T(f), the C(mag)(T) data follow the relation: C(mag)(T)/T = gamma + AT. We suggest that the competition of the antiferromagnetic (AF) intra-chain and the ferromagnetic (F) inter-chain interactions in a low-dimensional arrangement of magnetic Co(2+) ions can produce the spin-glass behaviour in the sample. The susceptibility data was analyzed in terms of a spin S = 3/2 Heisenberg linear-chain model with a small exchange energy and is consistent with the presence of both F and AF interactions. The splitting of the crystal field energy levels of the Co(2+) ions causes a Schottky-type specific heat anomaly of around 60 K.  相似文献   

9.
The calculations of EPR parameters (g factors g||, g(perpendicular) and zero-field splitting D) related to the impurity structures have been made from the high-order perturbation formulas for Cr(3+) ions in trigonal KSc(MoO(4))(2), RbIn(MoO(4))(2) and RbSc(MoO(4))(2) crystals. It is found that the MO(6) octahedra in these crystals change from the trigonal elongation in the pure crystals to the trigonal compression in the impurity centers. The results are discussed.  相似文献   

10.
The magnetic properties of a new family of single-molecule magnet Ni(3)Mn(2) complexes were studied using theoretical methods based on Density Functional Theory (DFT). The first part of this study is devoted to analysing the exchange coupling constants, focusing on the intramolecular as well as the intermolecular interactions. The calculated intramolecular J values were in excellent agreement with the experimental data, which show that all the couplings are ferromagnetic, leading to an S = 7 ground state. The intermolecular interactions were investigated because the two complexes studied do not show tunnelling at zero magnetic field. Usually, this exchange-biased quantum tunnelling is attributed to the presence of intermolecular interactions calculated with the help of theoretical methods. The results indicate the presence of weak intermolecular antiferromagnetic couplings that cannot explain the ferromagnetic value found experimentally for one of the systems. In the second part, the goal is to analyse magnetic anisotropy through the calculation of the zero-field splitting parameters (D and E), using DFT methods including the spin-orbit effect.  相似文献   

11.
By using complete diagonalization method, the zero-field splitting and g factors of the ground 4A2 and the first excited 2E states of Cr3+ ions in emerald are calculated. The theoretical results are in good agreement with the experimental data. The dependencies of the g factors on the crystal field parameters, including Dq, v, and v', have been studied. It is shown that, the g factors of the ground state varied with the crystal field parameters approximately in a linear way, but the g factors of the first excited state varied nonlinearly with these parameters.  相似文献   

12.
By applying the high-order perturbation formulas based on the cluster approach for the EPR parameters of 3d2 ions in trigonal symmetry, the zero-field splitting D, g factors gparallel, gperpendicular, and hyperfine structure constants Aparallel, Aperpendicular for Ti2+ and V3+ ions in CdS crystals are studied. From the studies, the defect structures of these paramagnetic impurity centers are obtained and the EPR parameters are also explained reasonably.  相似文献   

13.
A theoretical method for studying the inter-relationships between electronic and molecular structure has been proposed on the basis of the complete energy matrices of electron-electron repulsion, the ligand field, and the spin-orbit coupling for the d5 configuration ion in a trigonal ligand field. As an application, the local distortion structure and temperature dependence of zero-field splitting for Fe3+ ions in the Al2O3:Fe3+ system have been investigated. Our results indicate that the local lattice structure of the (FeO6)(9-) octahedron in the Al2O3:Fe3+ system has an elongated distortion and the value of distortion is associated with the temperature. The elongated distortion may be attributed to the facts that the Fe3+ ion has an obviously larger ionic radius than the Al3+ ion and the Fe3+ ion will push the two oxygen triangles upward and downward, respectively, along the 3-fold axis. By diagonalizing the complete energy matrices, we found that the theoretical results of electronic transition energies and EPR spectra for Fe3+ ions in the Al2O3:Fe3+ system are in good agreement with the experimental findings. Moreover, to understand the detailed physical and chemical properties of the Al2O3, the theoretical values of the zero-field splitting parameters and the corresponding distortion parameters in the range 50 K 相似文献   

14.
This paper reports a detailed theoretical calculation of the temperature dependence of zero-field splitting D (characterized by ΔD(T)=D(T)-D(0)) for the tetragonal Cr3+ center in MgO crystal by considering both the static contribution due to the thermal expansion of Cr3+ center and the vibrational contribution caused by electron-phonon (including the acoustic and optical phonons) interaction. The vibrational contribution due to the acoustic phonon is calculated using the long-wave approximation similar to the study on the specific heat of crystals and that due to optical phonon is estimated using the single-phonon model. The calculated results are in reasonable agreement with the experimental values. From the calculation, it is found that the static contribution ΔDstat(T) (which is often regarded as very small and is neglected in the previous papers) is larger than the vibrational contribution ΔDvib(T) and so the reasonable studies of temperature dependence of zero-field splitting should take both the static and the vibrational contributions into account.  相似文献   

15.
Two mononuclear high-spin Fe(II) complexes with trigonal planar ([Fe(II)(N(TMS)(2))(2)(PCy(3))] (1) and distorted tetrahedral ([Fe(II)(N(TMS)(2))(2)(depe)] (2) geometries are reported (TMS = SiMe(3), Cy = cyclohexyl, depe = 1,2-bis(diethylphosphino)ethane). The magnetic properties of 1 and 2 reveal the profound effect of out-of-state spin-orbit coupling (SOC) on slow magnetic relaxation. Complex 1 exhibits slow relaxation of the magnetization under an applied optimal dc field of 600 Oe due to the presence of low-lying electronic excited states that mix with the ground electronic state. This mixing re-introduces orbital angular momentum into the electronic ground state via SOC, and 1 thus behaves as a field-induced single-molecule magnet. In complex 2, the lowest-energy excited states have higher energy due to the ligand field of the distorted tetrahedral geometry. This higher energy gap minimizes out-of-state SOC mixing and zero-field splitting, thus precluding slow relaxation of the magnetization for 2.  相似文献   

16.
EPR Spectra have been measured for aqueous solutions of a series of Gd3+ complexes at variable temperature and a range of magnetic fields; S-band (0.14 T), X-band (0.34 T), Q-band (1.2 T), and 2-mm-band (5.0 T). The major contribution to the observed line widths is magnetic-field-dependent and is interpreted as being due to the modulation of the zero-field splitting produced by distortion of the complexes from perfect symmetry. The transverse and longitudinal relaxation matrices for an 8S ion with such an interaction have been calculated using Redfield theory with vector-coupling methods, and diagonalised numerically to obtain relaxation rates and intensities for the degenerate transitions which contribute to the multiplet. The observed line width, which is inversely proportional to the magnetic field at low temperatures, is best described by the intensity-weighted mean transverse relaxation time for the four transitions with non-zero intensity. A least-squares fit of the data yields the square of the zero-field splitting tensor, Δ2, and a correlation time, τv, with activation energy, Ev. The physical significance of these parameters and the extent of validity of the theoretical approach are considered. The parameters are used to predict the magnetic-field dependence of the longitudinal and transverse electronic relaxation times, which are discussed in the context of their relevance to 1H-NMR relaxivity.  相似文献   

17.
A pseudotetrahedral cobalt(II) complex with a positive axial zero-field splitting parameter of D = 12.7 cm(-1), as determined by high-field EPR spectroscopy, is shown to exhibit slow magnetic relaxation under an applied dc field.  相似文献   

18.
A tetranuclear complex [Cr(III)Mn(II)(3)(PyA)(6)Cl(3)] 1 containing pyridine-2-aldoximato monoanion, PyA, has been structurally and magnetochemically characterized. The compound is a rare example of a tetranuclear star-shaped metal topology containing pyridine-2-aldoximato ligands. Static magnetic studies have demonstrated very weak antiferromagnetic exchange interactions between the paramagnetic centers (S(Cr) = 3/2 and S(Mn) = 5/2) resulting in closely spaced low-lying levels, which undergo splitting and crossing. Preliminary high-field EPR measurements (20 < nu < 388 GHz) indicate the presence of zero-field splitting D of the order of 0.7 cm(-1).  相似文献   

19.
20.
It is shown that electron spin polarization can be used to probe the anisotropy of singlet-triplet interconversion of radical pairs involved in photosynthetic charge separation. Anisotropic polarization may be observed with non-oriented reaction centres, provided an anisotropic interaction (e.g. zero-field splitting or g-tensor anisotropy) produces resolvable structure in the EPR spectrum of the reaction intermediates. Two examples, both for prereduced bacterial reaction centres, are discussed: (i) the triplet state of the primary donor (a bactenochlorophyll dimer) and (ii) the reduced secondary acceptor (a semiquinone). Computer simulations are used to understand the observed behaviour and yield information on the magnetic and electronic interactions involved in electron transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号