首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This work investigates the effect of selected linear image processing methods on the depth of correlation (DoC) in micro particle image velocimetry using a single camera. In practice, band-pass and high-pass filters (background subtraction) are commonly applied to micro particle image velocimetry images. This work provides analytical models describing the effect of the parameters of low-, high-, and band-pass filters on the DoC and verifies the models by experiments. Furthermore, we propose a scheme that allows computing the weighting function and DoC for more complicated cases numerically.  相似文献   

2.
The effect of independent variations of the intensity of individual tracer particles between consecutive images on the accuracy of common displacement estimation methods in particle image velocimetry (PIV) is investigated. Such variations can be observed, e.g., in flows with components perpendicular to the illumination sheet, leading to out-of-plane displacements of the tracer particles. The achievable accuracy of PIV measurements is shown to be limited by this effect alone to be of the order of 0.1 pixel, yielding a basic limitation of the PIV technique.
Holger NobachEmail:
  相似文献   

3.
Fei  R.  Merzkirch  W. 《Experiments in fluids》2004,37(4):559-565
With a stereo PIV system, in order to perform reliable measurements of the three velocity components in liquid flow, it is mandatory to minimise the errors made in determining the 2D displacement vectors and the viewing direction of each of the two cameras. We present a method for determining the viewing direction in the angular displacement stereo system by means of a digital imaging procedure such that the direct measurement of geometrical parameters of the set-up is avoided. This makes the method particularly useful for measurements through the transparent walls confining the liquid flow. A third order polynomial used for calibrating the stereo system is shown to provide more accurate results than imaging functions of lower order. Further improvement of the evaluation accuracy is obtained with the application of an artificial neuronal network, but at the expense of considerably increasing the computation time. A comparison of the evaluation results obtained with the operational procedures presented in this paper with those generated with another method that is applicable to liquid flow (Soloff et al. 1997) shows, that the present procedures can be considered as a viable alternative to existing methods.  相似文献   

4.
Cross-correlation Particle Image Velocimetry (PIV) has become a well known and widely used experimental technique. It has been already documented that difficulties arise resolving velocity structures smaller than the interrogation window. This is caused by signal averaging over this window. A new cross-correlation PIV method that eliminates this restriction is presented. The new method brings some other enhancements, such as the ability to deal with large velocity gradients, seeding density inhomogeneities, and high dispersion in the brightness of the particles. The final result is a method with a remarkable capability for accurately resolving small scale structures in the flow, down to a few times the mean distance between particles. When compared to particle tracking velocimetry, the new method is capable of obtaining measurements at high seeding density concentrations. Therefore, better overall performance is obtained, especially with the limited resolutions of video CCDs. In this paper, the new method is described and its performance is evaluated and compared to traditional PIV systems using synthetic images. Application to real PIV data are included and the results discussed. Received: 9 March 1998 / Accepted: 25 August 1998  相似文献   

5.
Two iterative PIV image processing methods are introduced, which utilize displacement and deformation of the interrogation areas to maximize the correlation. The velocity gradients used for the window deformation are iteratively estimated directly from the images and no velocity values are required from neighbouring interrogation areas, as with numerical differentiation. The improved accuracy and resolution of the velocity gradient estimation compared to numerical differentiation is shown using synthetic images. The performance in a real application is shown using experimental reference images.  相似文献   

6.
As testified by a previous article (Astarita and Cardone in Exp Fluids 38:233–243, 2005), a critical point that can influence significantly the accuracy of image deformation methods (IDM) for particle image velocimetry (PIV) is the interpolation scheme (IS) used in the reconstruction of deformed images. In the cited paper the effect of noise has been neglected and for this reason in this follow-up paper the influence of the IS, in the presence of noise, on both accuracy and spatial resolution is studied. Performance assessment is conducted using synthetic images with particles of Gaussian shape and with constant and sinusoidal displacement fields. Both the local and the top hat moving average approaches are investigated and the modulation transfer function, the total and bias errors have been used to evaluate the performances of IDMs for PIV applications. The results show that, when a high noise level is present in the images, the influence of the IS is less relevant than what was shown by Astarita and Cardone (Exp Fluids 38:233–243, 2005).  相似文献   

7.
On the accuracy of velocity and vorticity measurements with PIV   总被引:3,自引:0,他引:3  
A number of numerical techniques aimed at improving the accuracy of measurements using the correlation approach in Particle Image Velocimetry, PIV, are proposed and investigated. In this approach the velocity (displacement) is found as the location of a peak in the correlation map. Based on an experimental model the best performing peak finding approaches are selected among different strategies. Second, an algorithm is proposed which minimizes errors on the estimates of vorticity using velocity distributions obtained by means of PIV. The proposed methods are experimentally validated against a flow with known properties. Work supported by NASA Ames Research Center  相似文献   

8.
The use of a weighting window (WW) in the evaluation of the cross-correlation coefficient and in the iterative procedure of image deformation method for particle image velocimetry (PIV) applications can be used to both stabilise the process and to increase the spatial resolution. The choice of the WW is a parameter that influences the complete PIV algorithm. Aim of this paper is to examine the influence of this aspect on both the accuracy and spatial resolution of the PIV algorithm. Results show an overall accordance between the theoretical approach and the simulation both with synthetic and real images. The choice of the combination of WW influences significantly the spatial resolution and accuracy of the PIV algorithm.
T. AstaritaEmail:
  相似文献   

9.
Analysis of interpolation schemes for image deformation methods in PIV   总被引:1,自引:0,他引:1  
Abstract   Image deformation methods in particle image velocimetry are becoming more and more accepted by the scientific community but some aspects have not been thoroughly investigated neither theoretically nor with the aid of simulations. A fundamental step in this type of algorithm is reconstruction of the deformed images that requires the use of an interpolation scheme. The aim of this paper is to examine the influence of this aspect on the accuracy of the PIV algorithm. The performance assessment has been conducted using synthetic images and the results show that both the systematic and total errors are strongly influenced by the interpolation scheme used in the reconstruction of the deformed images. Time performances and the influence of particle diameter are also analysed.
T. AstaritaEmail: Phone: +39-081-7683389Fax: +39-081-2390364
  相似文献   

10.
The near-ground flow structure of tornadoes is of utmost interest because it determines how and to what extent civil structures could get damaged in tornado events. We simulated tornado-like vortex flow at the swirl ratios of S = 0.03–0.3 (vane angle θv = 15°–60°), using a laboratory tornado simulator and investigated the near-ground-vortex structure by particle imaging velocimetry. Complicated near-ground flow was measured in two orthogonal views: horizontal planes at various elevations (z = 11, 26 and 53 mm above the ground) and the meridian plane. We observed two distinct vortex structures: a single-celled vortex at the lowest swirl ratio (S = 0.03, θv = 15°) and multiple suction vortices rotating around the primary vortex (two-celled vortex) at higher swirl ratios (S = 0.1–0.3, θv = 30°–60°). We quantified the effects of vortex wandering on the mean flow and found that vortex wandering was important and should be taken into account in the low swirl ratio case. The tangential velocity, as the dominant velocity component, has the peak value about three times that of the maximum radial velocity regardless of the swirl ratio. The maximum velocity variance is about twice at the high swirl ratio (θv = 45°) that at the low swirl ratio (θv = 15°), which is contributed significantly by the multiple small-scale secondary vortices. Here, the results show that not only the intensified mean flow but greatly enhanced turbulence occurs near the surface in the tornado-like vortex flow. The intensified mean flow and enhanced turbulence at the ground level, correlated with the ground-vortex interaction, may cause dramatic damage of the civil structures in tornadoes. This work provides detailed characterization of the tornado-like vortex structure, which has not been fully revealed in previous field studies and laboratory simulations. It would be helpful in improving the understanding of the interaction between the tornado-like vortex structure and the ground surface, ultimately leading to better predictions of tornado-induced wind loads on civil structures.  相似文献   

11.
Low Reynolds number aerodynamic experiments with flapping animals (such as bats and small birds) are of particular interest due to their application to micro air vehicles which operate in a similar parameter space. Previous PIV wake measurements described the structures left by bats and birds and provided insight into the time history of their aerodynamic force generation; however, these studies have faced difficulty drawing quantitative conclusions based on said measurements. The highly three-dimensional and unsteady nature of the flows associated with flapping flight are major challenges for accurate measurements. The challenge of animal flight measurements is finding small flow features in a large field of view at high speed with limited laser energy and camera resolution. Cross-stream measurement is further complicated by the predominately out-of-plane flow that requires thick laser sheets and short inter-frame times, which increase noise and measurement uncertainty. Choosing appropriate experimental parameters requires compromise between the spatial and temporal resolution and the dynamic range of the measurement. To explore these challenges, we do a case study on the wake of a fixed wing. The fixed model simplifies the experiment and allows direct measurements of the aerodynamic forces via load cell. We present a detailed analysis of the wake measurements, discuss the criteria for making accurate measurements, and present a solution for making quantitative aerodynamic load measurements behind free-flyers.  相似文献   

12.
根据高斯光束的性质,本文设计了一种利用普通连续激光器产生较高质量PIV片光源的光路系统。整个光路分为两部分,第一部分为原始光束优化光路,第二部分为片光分光光路。原始光束优化光路通过一系列凸凹透镜有序布置,将原来直径大于2mm的光斑在PIV实验区间控制到1mm以下。优化光路能有效集中激光能量,提高片光亮度。片光分光光路使用鲍威尔棱镜将激光光束分为扇形片光,再用平凸柱面镜将扇形片光汇聚为矩形片光。鲍威尔棱镜分得片光的能量在宽度方向分布较常规双凹柱面镜均匀。平凸柱面镜将扇形光源中分散在极宽区域的能量集中在固定宽度里,使得激光能量的有效利用率提高,有利于PIV实验。  相似文献   

13.
An experiment is conducted in a four-roll mill to verify a novel particle image velocimetry (PIV) recording evaluation method that combines the advantages of central difference interrogation and an image correction technique. Simulations and experiments in the four-roll mill geometry demonstrate that the central difference image correction method described in this paper can not only avoid the bias error resulting from the curvature and high-velocity-gradient flow but also effectively reduce the random error resulting from particle image distortion. Two image correction schemes and two base algorithms are discussed. A four-point image correction scheme is suggested on the basis of the traditional correlation-based interrogation algorithm to enable a fast, high-accuracy evaluation of PIV recordings in complex flows. In addition, the PIV experiment accurately determines the velocity field in the four-roll mill and confirms the linear distributions of the velocity components and the roller speed.  相似文献   

14.
A sophisticated strategy for the evaluation of time-resolved PIV image sequences is presented which takes the temporal variation of the particle image pattern into account. The primary aim of the method is to increase the accuracy and dynamic range by locally adopting the particle image displacement for each interrogation window to overcome the largest drawback of PIV. This is required in order to resolve flow phenomena which have so far remained inaccessible. The method locally optimizes the temporal separation between the particle image pairs by taking first and second order effects into account. The validation of the evaluation method is performed with synthetically generated particle image sequences based on the solution of a direct numerical simulation. In addition, the performance of the evaluation approach is demonstrated by means of a real image sequence measured with a time-resolved PIV system.  相似文献   

15.
In this paper the problem posed by interfaces when present in PIV measurements is addressed. Different image pre-processing, processing and post-processing methodologies with the intention to minimize the interface effects are discussed and assessed using Monte Carlo simulations. Image treatment prior to the correlation process is shown to be incapable of fully removing the effects of the intensity pedestal across the object edge. The inherent assumption of periodicity in the signal causes the FFT-based correlation technique to perform the worst when the correlation window contains a signal truncation. Instead, an extended version of the masking technique introduced by Ronneberger et al. (Proceedings of the 9th international symposium on applications of laser techniques to fluid mechanics, Lisbon, 1998) is able to minimize the interface-correlation, resolving only the particle displacement peak. Once the displacement vector is obtained, the geometric center of the interrogation area is not the correct placement. Instead, the centre of mass position allows an unbiased representation of the wall flow (Usera et al. in Proceedings of the 12th international symposium on applications of laser techniques to fluid mechanics, Lisbon, 2004). The aforementioned concepts have been implemented in an adaptive interrogation methodology (Theunissen et al. in Meas Sci Technol 18:275–287, 2007) where additionally non-isotropic resolution and re-orientation of the correlation windows is applied near the interface, maximizing the wall-normal spatial resolution. The increase in resolution and robustness are demonstrated by application to a set of experimental images of a flat-plate, subsonic, turbulent boundary layer and a hypersonic flow over a double compression ramp.  相似文献   

16.
This paper describes the use of a rotating all-mirror image derotator system, high-speed video and particle image velocimetry (PIV) to visualise and quantitatively examine the flow patterns between the blades of a centrifugal impeller. The flow field relative to the moving centrifugal impeller is presented. Published online: 13 December 2002  相似文献   

17.
This paper presents a new experimental approach using PIV technique to measure the local instantaneous laminar burning velocity of a stretched premixed flame. Up to now, from experimental techniques, this physical property was only accessible in average and the instantaneous interactions of flame with flow structures, mixture variations and walls could not be considered. In the present work, the local burning velocity is measured as the difference between the local flame speed and the local fresh gas velocity at the entrance of the flame zone. Two original methods are proposed to deduce these quantities from pair of particle images. The local flame speed is measured from the distance between two successive flame positions. For the flame localization, a new extraction tool combined with a filtering technique is proposed to access to the flame front coordinates with sub-pixel accuracy. The local fresh gas velocity near the flame front is extracted from the maximum of the normal velocity profile, located within 1 mm ahead of the flame front. To achieve the required spatial resolution, a new algorithm based on adaptive interrogation window scheme has been developed by taking into account the flow and flame front topologies. The accuracy and reliability of our developments have been evaluated from two complementary approaches based, respectively, on synthetic images of particle and on the well-established configuration of outwardly propagating spherical flames. In the last part of the paper, an illustration of the potentials of our new approach is shown in the case of a laminar flame propagating through a stratified mixture.  相似文献   

18.
Recent technological advancements have made the use of particle image velocimetry (PIV) more widespread for studying turbulent flows over a wide range of scales. Although PIV does not threaten to make obsolete more mature techniques, such as hot-wire anemometry (HWA), it is justifiably becoming an increasingly important tool for turbulence research. This paper assesses the ability of PIV to resolve all relevant scales in a classical turbulent flow, namely grid turbulence, via a comparison with theoretical predictions as well as HWA measurements. Particular attention is given to the statistical convergence of mean turbulent quantities and the spatial resolution of PIV. An analytical method is developed to quantify and correct for the effect of the finite spatial resolution of PIV measurements. While the present uncorrected PIV results largely underestimate the mean turbulent kinetic energy and energy dissipation rate, the corrected measurements agree to a close approximation with the HWA data. The transport equation for the second-order structure function in grid turbulence is used to establish the range of scales affected by the limited resolution. The results show that PIV, due to the geometry of its sensing domain, must meet slightly more stringent requirements in terms of resolution, compared with HWA, in order to provide reliable measurements in turbulence.
P. LavoieEmail:
  相似文献   

19.
A rotating mirror is widely used to generate the velocity shift that can resolve the directional ambiguities of PIV (particle image velocimetry) measurements. The rotating mirror system inevitably creates the normal displacement of the resulting PIV images and causes systematic image errors. Two corrective methods are proposed to eliminate or reduce the image biasing in PIV system. The use of two linearly traversing mirrors, instead of a single rotating mirror, shows that image biasing can be eliminated and the velocity shift well generated. As a second option, two co-rotating mirrors, instead of one, can reduce the image biasing with a maximum velocity shift available. Detailed imaging kinematics of the two suggestive methods are presented to lead to designing of practical devices that improve the PIV capabilities by reducing the systematic image errors. The authors like to acknowledge the partial financial support provided from the Turbo and Power Machinery Research Center (TPMRC) of Seoul National University, Seoul, Korea.  相似文献   

20.
The spatial resolution of PIV can be increased significantly by using an image deformation method (IDM) and very small grid distance (i.e. the final distance between vectors), therefore, also increasing the processing time. By using an interpolation scheme with a good spectral response, in the dense predictor step of the algorithm, it is possible to increase the grid distance without decreasing the spatial resolution therefore decreasing the total processing time.
T. AstaritaEmail:
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号