首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Recent research on microfluidic paper-based analytical devices (μPADs) has shown that paper has great potential for the fabrication of low-cost diagnostic devices for healthcare and environmental monitoring applications. Herein, electrochemiluminescence (ECL) was introduced for the first time into μPADs that were based on screen-printed paper-electrodes. To further perform high-specificity, high-performance, and high-sensitivity ECL on μPADs for point-of-care testing (POCT), ECL immunoassay capabilities were introduced into a wax-patterned 3D paper-based ECL device, which was characterized by SEM, contact-angle measurement, and electrochemical impedance spectroscopy. With the aid of a home-made device-holder, the ECL reaction was triggered at room temperature. By using a typical tris(bipyridine)ruthenium-tri-n-propylamine ECL system, this paper-based ECL 3D immunodevice was applied to the diagnosis of carcinoembryonic antigens in real clinical serum samples. This contribution further expands the number of sensitive and specific detection modes of μPADs.  相似文献   

2.
Paper-based analytical devices (PADs), including lateral flow assays (LFAs), dipstick assays and microfluidic PADs (μPADs), have a great impact on the healthcare realm and environmental monitoring. This is especially evident in developing countries because PADs-based point-of-care testing (POCT) enables to rapidly determine various (bio)chemical analytes in a miniaturized, cost-effective and user-friendly manner. Low sensitivity and poor specificity are the main bottlenecks associated with PADs, which limit the entry of PADs into the real-life applications. The application of nanomaterials in PADs is showing great improvement in their detection performance in terms of sensitivity, selectivity and accuracy since the nanomaterials have unique physicochemical properties. In this review, the research progress on the nanomaterial-based PADs is summarized by highlighting representative recent publications. We mainly focus on the detection principles, the sensing mechanisms of how they work and applications in disease diagnosis, environmental monitoring and food safety management. In addition, the limitations and challenges associated with the development of nanomaterial-based PADs are discussed, and further directions in this research field are proposed.  相似文献   

3.
Recent research on microfluidic paper‐based analytical devices (μPADs) has shown that paper has great potential for the fabrication of low‐cost diagnostic devices for healthcare and environmental monitoring applications. Herein, electrochemiluminescence (ECL) was introduced for the first time into μPADs that were based on screen‐printed paper‐electrodes. To further perform high‐specificity, high‐performance, and high‐sensitivity ECL on μPADs for point‐of‐care testing (POCT), ECL immunoassay capabilities were introduced into a wax‐patterned 3D paper‐based ECL device, which was characterized by SEM, contact‐angle measurement, and electrochemical impedance spectroscopy. With the aid of a home‐made device‐holder, the ECL reaction was triggered at room temperature. By using a typical tris(bipyridine)ruthenium–tri‐n‐propylamine ECL system, this paper‐based ECL 3D immunodevice was applied to the diagnosis of carcinoembryonic antigens in real clinical serum samples. This contribution further expands the number of sensitive and specific detection modes of μPADs.  相似文献   

4.
A simple, sensitive, and rapid method using gas chromatography (GC)-mass spectrometry (MS) is developed for the simultaneous separation and identification of the active ingredients of Liqusticum Chuanxiong Hort (Chuanxiong). Ten phthalic anhydride derivatives (PADs) are identified in Chuanxiong as 3-butylphthalide, 3-butylidenephthalide, 3-butylidene-4-hydroxyphthalide, senkyunolide A, neocnidilide, Z-ligustilide, E-ligustilide, senkyunolide F, senkyunolide-H, and senkyunolide-I. The existence of ferulic acid and vanillin in Chuanxiong extract is also demonstrated. Further identification of these compounds is performed by thin-layer chromatography, high-performance liquid chromatography (HPLC), and HPLC-MS analysis. This is the first report of the separation and determination of the PADs in Chuanxiong by GC-MS.  相似文献   

5.
Microfluidic paper-based analytical devices (μPADs) allow user-friendly and portable chemical determinations, although they provide limited applicability due to insufficient sensitivity. Several approaches have been proposed to address poor sensitivity in μPADs, but they frequently require bulky equipment for power and/or read-outs. Universal serial buses (USB) are an attractive alternative to less portable power sources and are currently available in many common electronic devices. Here, USB-powered μPADs (USB μPADs) are proposed as a fusion of both technologies to improve performance without adding instrumental complexity. Two ITP USB μPADs were developed, both powered by a 5 V potential provided through standard USB ports. The first device was fabricated using the origami approach. Its operation was analyzed experimentally and numerically, yielding a two-order-of-magnitude sample focusing in 15 min. The second ITP USB μPAD is a novel design, which was numerically prototyped with the aim of handling larger sample volumes. The reservoirs were moved away from the ITP channel and capillary action was used to drive the sample and electrolytes to the separation zone, predicting 25-fold sample focusing in 10 min. USB μPADs are expected to be adopted by minimally-trained personnel in sensitive areas like resource-limited settings, the point-of-care and in emergencies.  相似文献   

6.
S Wang  L Ge  X Song  M Yan  S Ge  J Yu  F Zeng 《The Analyst》2012,137(16):3821-3827
In this paper, chemiluminescence immunoassay (CLIA) was introduced into the recently proposed microfluidic paper-based analytical devices (μPADs) through covalent fabrication strategy for the first time. This novel paper-based CLIA, with high-throughput, rapid, stable and reusable CL response to trace amounts of analyte in real biological samples, combines the simplicity and low-cost of the μPADs with the high sensitivity and selectivity of CLIA. Periodate oxidation, which can form covalent bonds between polysaccharides and proteins, was used for activation of μPADs to covalently immobilize antibodies on μPADs in this work for the first time. Thus, the paper-based sandwich CLIA and regeneration of it can be easily realized for further development of this technique in sensitive, specific and low-cost applications. The application test of this paper-based CLIA was successfully performed, as a model, through the determination of biomarkers in human serum on paper microzone plate. The paper-based CLIA will be very useful when the level of an analyte in real biological sample is important for point-of-care testing, public health and environmental monitoring in remote regions, developing or developed countries.  相似文献   

7.
8.
纸基分析芯片(纸芯片)具有成本低、便携化、操作和后处理简单无污染等优点,在临床诊断、食品质量控制和环境监测等领域有着广阔的应用前景。然而,由于难以制作性能优异的疏脂性屏障,使得纸芯片在涉及有机溶剂和表面活性剂的分析检测中,其发展受到了限制。针对当前纸芯片开发研究中存在的灵敏度较低、对有机溶剂和表面活性剂敏感等难点问题,研究人员在滤纸基底上制作出了性能优异的疏水隔离图案和高粘附疏水表面,并验证了所制备的纸芯片对涉及有机溶剂和表面活性剂的分析检测具有普适性。本文对此类普适型纸芯片的研究与应用进行评述。  相似文献   

9.
Naturally occurring opals from three different regions in Australia were studied for their thermal characteristics. All the opals showed initial expansion followed by contraction in thermomechanical analysis (TMA) although the temperature at which the change from expansion to contraction occurred depended on their provenance. Thermogravimetric analysis (TG) revealed different rates and temperatures of dehydration for these opals. A general correlation between the temperature at which there was a zero thermal expansion and that of the maximum rate of dehydration was observed. A dehydration–sintering mechanism is proposed with the effect of sintering being more pronounced following total dehydration. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
In recent years, there has been high interest in paper-based microfluidic sensors or microfluidic paper-based analytical devices (μPADs) towards low-cost, portable, and easy-to-use sensing for chemical and biological targets. μPAD allows spontaneous liquid flow without any external or internal pumping, as well as an innate filtration capability. Although both optical (colorimetric and fluorescent) and electrochemical detection have been demonstrated on μPADs, several limitations still remain, such as the need for additional equipment, vulnerability to ambient lighting perturbation, and inferior sensitivity. Herein, alternative detection methods on μPADs are reviewed to resolve these issues, including relatively well studied distance-based measurements and the newer capillary flow dynamics-based method. Detection principles, assay performance, strengths, and weaknesses are explained for these methods, along with their potential future applications towards point-of-care medical diagnostics and other field-based applications.  相似文献   

11.
Paper-based microfluidic devices (μPADs) are capable of achieving rapid quantitative measurements of a variety of analytes inexpensively. μPADs rely on patterning hydrophilic-hydrophobic regions on a sheet of paper in order to create capillary channels within impermeable fluidic brakes on the paper. Here, we present a novel, highly flexible and low-cost fabrication method using a desktop digital craft plotter/cutter and technical drawing pens with tip size of 0.5 mm. The pens were used with either commercial black permanent ink for drawing fluidic brakes, or with specialty in-house formulated aqueous inks. With the permanent marker ink it was possible to create barriers on paper rapidly and in a variety of designs in a highly flexible manner. For instance, a design featuring eight reservoirs can be produced within 10 s for each μPAD with a consistent line width of brakes (%RSD < 1.5). Further, we investigated the optimal viscosity range of in-house formulated inks controlled with additions of poly(ethylene glycol). The viscosity was measured by capillary electrophoresis and the optimal viscosity was in the range of ∼3–6 mPa s. A functional test of these μPADs was conducted by the screening of antioxidant activity. Colorimetric measurements of flavonoid, phenolic compounds and DPPH free radical scavenging activity were carried out on μPADs. The results can be detected by the naked eye and simply quantified by using a camera phone and image analysis software. The fabrication method using technical drawing pens provides flexibility in the use of in-house formulated inks, short fabrication time, simplicity and low cost.  相似文献   

12.
Titanate nanotubes were synthesized utilizing the hydrothermal method using titanium dioxide nanoparticles. The experiments were carried out considering the process as a function of reaction temperature, time, NaOH concentration and the acidity of the washing solution. The formation of titanate nanotubes was shown to be affected strongly by variations in any parameter. The optimum conditions for the synthesis of titanate nanotubes were determined to be a reaction temperature of 190 °C, and a reaction time of 12 h, using 10 M NaOH concentration and the washing solution to have a pH of 5.5. In addition, thermogravimetric analysis (TG/DTG) was used to investigate the thermal behaviour and dehydration kinetics of titanate nanotubes. In order to better understand their thermal behaviour, the thermal analysis of bulk hydrogen trititanate was performed. The values of the apparent activation energies of the first and second dehydration stages for titanate nanotubes were 81.44 ± 15.85 and 82.69 ± 7.46 kJ mol?1, respectively. The values of the apparent activation energies of the first, second and third dehydration stages for bulk hydrogen trititanate were 115.93 ± 5.40, 137.58 ± 6.47 and 138.97 ± 8.47 kJ mol?1, respectively.  相似文献   

13.
Roaster diagrams that represent the stabilities of condensed phases as a function of temperature and percent oxygen appear to be more useful than the predominance area diagrams (PADs), which show the stability of different phases in the metal-sulfur-oxygen system at constant temperature. Roaster diagrams can be obtained from PADs and represent the intersection of total pressure lines with lines on a PAD extended in temperature. In this paper, PADs at four different temperatures and roaster diagrams for the system Cu-S-O are derived from PADs at total pressures of 0.25 atm and 1 atm. These diagrams show that at total pressures of 0.25 atm and 1 atm the CuO/CuO·CuSO4 phase transformation occurs at 1063 K and 1133 K at 50% oxygen. The more complex four-component system Cu-As-S-O will follow in a subsequent publications.  相似文献   

14.
We present a fit to photoelectron angular distributions (PADs) measured following the photoionization of rotationally selected A1Au state acetylene. In the case of the 4(1)2Sigmau- vibronic state of the ion, we are able to use this fit to make a complete determination of the radial dipole matrix elements and phases connecting the prepared level to each photoelectron partial wave. We have also investigated other Renner-Teller subbands with a view to disentangling geometrical and dynamical contributions to the resulting PADs.  相似文献   

15.
Co-Mn-Al layered double hydroxides (LDHs) with various Co:Mn:Al molar ratios (4:2:0, 4:1.5:0.5, 4:1:1, 4:0.5:1.5, and 4:0:2) were prepared and characterized. Magnesium containing LDHs Co-Mg-Mn (2:2:2), Co-Mg-Mn-Al (2:2:1:1), and Co-Mg-Al (2:2:2) were also studied. Thermal decomposition of prepared LDHs and formation of related mixed oxides were studied using high-temperature X-ray powder diffraction and thermal analysis. The thermal decomposition of Mg-free LDHs starts by their partial dehydration accompanied by shrinkage of the lattice parameter c from ca. 0.76 to 0.66 nm. The dehydration temperature of the Co-Mn-Al LDHs decreases with increasing Mn content from 180 °C in Co-Al sample to 120 °C in sample with Co:Mn:Al molar ratio of 4:1.5:0.5. A subsequent step is a complete decomposition of the layered structure to nanocrystalline spinel, the complete dehydration, and finally decarbonation of the mixed oxide phase. Spinel-type oxides were the primary crystallization products. Mg-containing primary spinels had practically empty tetrahedral cationic sites. A dramatic increase of the spinel cell size upon heating and analysis by Raman spectroscopy revealed a segregation of Co-rich spinel in Co-Mn and Co-Mn-Al specimens. In calcination products obtained at 500 °C, the spinel mean coherence length was 5-10 nm, and the total content of the X-ray diffraction crystalline portion was 50-90%. These calcination products were tested as catalysts in the total oxidation of ethanol and decomposition of N2O. The catalytic activity in ethanol combustion was enhanced by increasing (Co+Mn) content while an optimum content of reducible components was necessary for high activity in N2O decomposition, where the highest conversions were found for calcined Co-Mn-Al sample with Co:Mn:Al molar ratio of 4:1:1.  相似文献   

16.
Protein arginine deiminases (PADs) hydrolyze the side chain of arginine to form citrulline. Aberrant PAD activity is associated with rheumatoid arthritis, multiple sclerosis, lupus, and certain cancers. These pathologies established the PADs as therapeutic targets and multiple PAD inhibitors are known. Herein, we describe the first highly potent PAD1‐selective inhibitors ( 1 and 19 ). Detailed structure–activity relationships indicate that their potency and selectivity is due to the formation of a halogen bond with PAD1. Importantly, these inhibitors inhibit histone H3 citrullination in HEK293TPAD1 cells and mouse zygotes with excellent potency. Based on this scaffold, we also developed a PAD1‐selective activity‐based probe that shows remarkable cellular efficacy and proteome selectivity. Based on their potency and selectivity we expect that 1 and 19 will be widely used chemical tools to understand PAD1 biology.  相似文献   

17.
Photodetachment of AgX(-) (X = Cl, Br, I) and AuCl(-) is studied by a photoelectron velocity map imaging technique and theoretical calculations. Photoelectron spectra (PES) and photoelectron angular distributions (PADs) were obtained. The vibrationally resolved spectra provided approximately equal electron affinities (EAs) for AgX: 1.593(22) eV for AgCl, 1.623(21) eV for AgBr, and 1.603(22) eV for AgI, respectively. Franck-Condon simulations of these spectra gave the equilibrium bond lengths and vibrational frequencies of the title anions. Relativistic density functional theory (DFT) calculations using BLYP, PW91, PBE, and BP86 functionals have been performed to predict the EAs of the AgX (X = Cl, Br, I) molecules. The computed EAs at the BP86 level of theory are in good agreement with the experimental values. Energy partitioning analyses (EPA) at the BP86(ZORA)/QZ4P level of theory of both anions and their neutrals were reported.  相似文献   

18.
A novel method for electroosmotic flow (EOF) measurement on paper substrates is presented; it is based on dynamic mass measurements by simply using an analytical balance. This technique provides a more reliable alternative to other EOF measurement methods on porous media. The proposed method is used to increase the amount and quality of the available information about physical parameters that characterize fluid flow on microfluidic paper–based analytical devices (μPADs). Measurements were performed on some of the most frequently used materials for μPADs, i.e., Whatman #1 , S&S, and Muntktell 00A filter paper. Obtained experimental results are consistent with the few previously reported data, either experimental or numerical, characterizing EOF in paper substrates. Moreover, a thorough analysis is presented for the quantification of the different effects that affect the measurements such as Joule effect and evaporation. Experimental results enabled, for the first time, to establish well-defined electroosmotic characteristics for the three substrates in terms of the magnitude of EOF as funtion of pH, enabling researchers to make a rational choice of the substrate depending on the electrophoretic technique to be implemented. The measurement method can be described as robust, reliable, and affordable enough for being adopted by researchers and companies devoted to electrophoretic μPADs and related technologies.  相似文献   

19.
The present work describes the fabrication of paper‐based analytical devices (μPADs) by immobilization of glucose oxidase onto the screen printed carbon electrodes (SPCEs) for the electrochemical glucose detection. The sensitivity towards glucose was improved by using a SPCE prepared from homemade carbon ink mixed with cellulose acetate. In addition, 4‐aminophenylboronic acid (4‐APBA) was used as a redox mediator giving a lower detection potential for improvement selectivity. Under optimized condition, the detection limit was 0.86 mM. The proposed device was applied in real samples. This μPAD has many advantages including low sample consumption, rapid analysis method, and low device cost.  相似文献   

20.
Thermal behaviour of ammonium (NH4alg), mono- (MEAalg), di- (DEAalg) and triethanolammonium (TEAalg) salts of alginic acid (Halg) was investigated by thermogravimetry (TG) and differential scanning calorimetry (DSC). Salts were prepared by the direct reaction of alginic acid with the ammonium hydroxide and with the respective ethanolamines. After preparation the compounds were lyophilized during 24 h and characterized by FTIR spectroscopy and elemental analysis (C, H and N). Under air the compounds exhibited three successive thermal decomposition steps: dehydration, decomposition of the polymeric matrix and finally, burning of carbonaceous residue. Under nitrogen two steps (dehydration and decomposition) were observed. The stability order of this series of compounds was: TEAalg this series of compounds was: TEAalg<DEAalg<NH4alg<Halg≈MEAalg. DSC curves between –50 and 150°C did not show any thermal events suggesting that after lyophilization probably non-freezing type water is present in the system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号