首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The physical and optical properties of plasmas are depended on dynamics of species in the discharge volume. Then, the presence of an electron beam, as a separate component, in a dusty plasma can modify the plasma structures through altering the discharge parameters. In this report, the linear propagation of acoustic modes in a collisionless dusty plasma contains electrons, ions and charged dust grains is investigated in the presence of an electron beam. Our analysis indicates that the electron beam can modify the dispersion relations of dust acoustic modes which resulted different data transportation in dusty plasmas. The obtained results are also examined for negative and positive charged dust grains with different number densities. The charge of dust grains represents an important role in the dynamics of the low frequency waves. Additionally, our findings reveal that the propagation of acoustic waves in dusty plasmas can be controlled by adjusting the electron number density of the beam and the cathode potential. Lastly, we obtian the destabilizing effects, originated from dust charge fluctuation, by reconsidering the dispersion relations of both dust acoustic modes.  相似文献   

2.
A theoretical model for the effect of dust grains on the self‐filamentation of a Gaussian electromagnetic beam propagating in a fully ionized plasma has been developed by employing the energy balance of the plasma constituents, perturbed electron and ion concentrations, and temperature. In this model, neutral atom ionization, re‐integration and accumulation of electrons and ions, photoelectric emission of electrons from the surface of dust grains, as well as elastic and charging collisions have also been considered. The effective dielectric constant in the presence of dust grains has been constructed. The effect of temporal growth of dust grains on various plasma parameters for different values of the dust density has been explored. The variation of the beam width with the normalized channel of propagation has been observed for distinct dust densities and dust charge states. It is observed that the non‐linearity induced by the effective dielectric constant in the presence of dust grains increases the self‐filamentation of the beam, thus enhancing the effective critical power with the dust density. Some of the outcomes of our approach are in line with experimental observations. These outcomes may be useful for explaining space and laboratory plasma experiments as well as for future studies in complex plasmas.  相似文献   

3.
《Physics letters. A》1997,235(6):610-616
The resistive drift instability and the Rayleigh-Taylor instability are studied self-consistently in a magnetized inhomogeneous dusty plasma. The effect of grain charge fluctuations is taken into consideration. It is found that the presence of the dust grains in the plasma can significantly affect the resistive drift instability but less significantly the Rayleigh-Taylor instability. Further, the grain charge fluctuation has a tendency to stabilize both instabilities.  相似文献   

4.
The resonant parametric decay of a Langmuir wave into a backward propagating Langmuir wave and an ion acoustic (IA) wave is studied in a cylindrical dusty plasma. The analysis shows that the frequency of the IA mode decreases with the parameter δc (where δc is the ratio of the ion density to the electron density) for negatively charged dust grains. The growth rate of the resonance decay instability (RDI) and the threshold required for its onset also decrease with δc and are strongly dependent on the electron to ion temperature ratio for both positively and negatively charged dust grains. The results obtained also illustrate the dependence of the threshold of the resonance decay instability (μth) on the plasma cylinder radius.  相似文献   

5.
《Physics letters. A》2020,384(25):126462
The effects of dust charge gradient (DCG) force and polarization force have been investigated on the properties of dust acoustic wave (DAW) and linear Jeans instability in strongly coupled dusty plasma. In the kinetic regime, DCG and polarization forces modify the DAW mode and couple with compressional viscoelastic wave mode. The Jeans instability criterion and critical wavenumber have been modified due to DCG force, polarization force and strong coupling effects. The results have been discussed in the warm photodisassociation region and in the laboratory complex plasmas. The strong correlation effect and the charge variation parameter stabilize the growth rate of Jeans instability. But, the polarization parameter stabilize the growth rate for positively charged dust grains and destabilize for negatively charged dust grains. The implications of charge gradient and polarization parameters are discussed for lower and higher charges in the laboratory complex plasma which decreases the growth of the propagating DAW.  相似文献   

6.
A standard nonlinear Schrödinger equation has been established by using the reductive perturbation method to investigate the propagation of electrostatic dust-acoustic waves, and their modulational instability as well as the formation of localized electrostatic envelope solitons in an electron-depleted unmagnetized dusty plasma system comprising opposite polarity dust grains and super-thermal positive ions. The relevant physical plasma parameters (viz., charge, mass, number density of positive and negative dust grains, and super-thermality of the positive ions, etc.) have rigorous impact to recognize the stability conditions of dust-acoustic waves. The present study is useful for understanding the mechanism of the formation of dust-acoustic envelope solitons associated with dust-acoustic waves in the laboratory and space environments.  相似文献   

7.
The waves propagating in the direction of a density gradient in a dusty plasma are analyzed. The analysis includes the recently predicted electrostatic dust Rossby mode that can develop in a rotating dusty plasma with charged grains, as well as waves in magnetized plasmas, and dust acoustic waves. The spatial behavior of the mode amplitude is determined for a few realistic plasma density profiles.  相似文献   

8.
基于量子分子动力学模型,系统地研究了从48Ca到298114一系列核素在不同温度下的最大Lyapunov指数、密度涨落以及体系多重碎裂之间的关系.发现最大Lyapunov指数随温度变化有一峰值出现(该峰值所对应的温度为"临界温度"),在该临界温度时体系的密度涨落达到最大,碎块的质量分布能够给出较好的PowerLaw指数.通过对最大Lyapunov指数与密度涨落随时间变化行为的研究,发现密度涨落的时间尺度要大于混沌的时间尺度,意味着混沌的概念可以用来研究体系的多重碎裂过程.最后还给出了有限体系相变的临界温度随体系大小变化的规律. Within a quantum molecular dynamics model we calculate the largest Lyapunov exponent (LLE), the density fluctuation, and the mass distribution of fragments for a series of nuclear systems at different initial temperatures. It is found that the LLE peaks at the temperature ("critical temperature") where the density fluctuation reaches a maximal value and the mass distribution fragments is fitted best by the Fisher s power law from which the critical exponents for mass and charge distribution are obtain...  相似文献   

9.
P K KARMAKAR 《Pramana》2011,76(6):945-956
The pulsational mode of gravitational collapse (PMGC) in a hydrostatically bounded dust molecular cloud is responsible for the evolution of tremendous amount of energy during star formation. The source of free energy for this gravito-electrostatic instability lies in the associated self-gravity of the dispersed phase of relatively huge dust grains of solid matter over the gaseous phase of background plasma. The nonlinear stability of the same PMGC in an infinite dusty plasma model (plane geometry approximation for large wavelength fluctuation in the absence of curvature effects) is studied in a hydrostatic kind of homogeneous equilibrium configuration. By the standard reductive perturbation technique, a Korteweg–de Vries (KdV) equation for investigating the nonlinear evolution of the lowest order perturbed self-gravitational potential is developed in a time-stationary (steady-state) form, which is studied analytically as well as numerically. Different nonlinear structures (soliton-like and soliton chain-like) are found to exist in different situations. Astrophysical situations, relevant to it, are briefly discussed.  相似文献   

10.
K. K. Mondal 《Pramana》2004,63(5):1021-1030
For an unmagnetized partially ionized dusty plasma containing electrons, singly charged positive ions, micron-sized massive negatively charged dust grains and a fraction of neutral atoms, dispersion relations for both the dust-ion-acoustic and the dustacoustic waves have been derived, incorporating dust charge fluctuation. The dispersion relations, under various conditions, have been exhaustively analysed. The explicit expressions for the growth rates have also been derived. International Conference on the Frontiers of Plasma Physics and Technology, 9–14 December 2002, Bangalore, India.  相似文献   

11.
《Physics letters. A》2003,280(2-3):226-233
The modulational instability of dust acoustic waves in a dusty plasma with non-adiabatic dust charge fluctuation is studied. Using the perturbation method, a modified nonlinear Schrödinger equation containing a damping term that comes from the effect of dust charge variation is derived. It is found that the modulational instability of the wave packet and the propagation characters of the envelope solitary waves are modified significantly by the non-adiabatic dust charge fluctuation.  相似文献   

12.
Abstract

The excitation of surface plasma waves due to the interaction of an elliptical relativistic density modulated electron beam with the magnetized dusty plasma column with elliptical cross-section has been studied. The dispersion relation of surface plasma waves has been retrieved from the derived dispersion relation by considering that the beam is absent and there is no dust in the plasma elliptical cylinder. It is shown that the Cherenkov and fast cyclotron interactions appear between the beam and eigen-modes of plasma column. The growth rate of the instability increases with the beam density and modulation index as one-third power of the beam density in Cherenkov interaction and is proportional to the square root of beam density in fast cyclotron interaction. The numerical results and graphs are presented, too.  相似文献   

13.
张丽萍  薛具奎  李延龙 《中国物理 B》2011,20(11):115201-115201
Both linear and nonlinear excitation in dusty plasmas have been investigated including the nonadiabatic dust charge fluctuation and Gaussian size distribution dust particles. A linear dispersion relation and a Korteweg-de Vries-Burgers equation governing the dust acoustic shock waves are obtained. The relevance of the instability of wave and the wave evolution to the dust size distribution and nonadiabatic dust charge fluctuation is illustrated both analytically and numerically. The numerical results show that the Gaussian size distribution of dust particles and the nonadiabatic dust charge fluctuation have strong common influence on the propagation of both linear and nonlinear excitations.  相似文献   

14.
张丽萍  薛具奎 《中国物理》2005,14(10):2052-2060
The effects of external magnetized field and nonadiabatic dust charge fluctuation on instability of wave incorporating the nonthermally distributed ions and the temperatures of ion and dust in dusty plasmas are investigated. A linear dispersion relation is obtained. The numerical results show that the external magnetized field, fast ions and nonadiabatic dust charge fluctuation have strong influence on the frequency and the damping of wave.  相似文献   

15.
The acceleration of charged dust grains by a high energy ion beam is investigated by obtaining the dispersion relation. The Cherenkov and cyclotron acceleration mechanisms of dust grains are compared with each other. The role of dusty plasma parameters and the magnetic field strength in the acceleration process are discussed. In addition, the stimulated waves by an ion beam in a fully magnetized dust–ion plasma are studied. It is shown that these waves are unstable at different angles with respect to the external magnetic field. It is also indicated that the growth rates increase by either increasing the ion and dust densities or decreasing the magnetic field strength. Finally, the results of our research show that the high energy ion beam can accelerate charged dust grains.  相似文献   

16.
Making use of the kinetic approach for plasma species, the electrostatic twisted dust-acoustic (DA) waves are studied in a collisionless unmagnetized multi-component dusty plasma consisting of electrons, singly ionized positive ions and charged massive dust grains. The Vlasov-Poisson equations are coupled together to obtain a generalized response function by using the Laguerre-Gaussian (LG) perturbed electrostatic potential and distribution function in the paraxial limit. The dispersive properties and growth rate instability of twisted DA waves are examined with distinct OAM states in a multi-component dusty plasma. Various significant modifications associated with the real wave frequency and growth rate are shown with respect to twist parameter and dust concentration. It is examined that dust concentration enhances the growth rate of twisted DA waves, whereas an increase in twist parameter reduces the growth rate instability. The excitation of twisted DA mode is also found to enhance with streaming speed of inertialess electrons. Our results may be useful for particle transport and trapping phenomena due to wave excitation in laboratory dusty plasmas.  相似文献   

17.
The effect of polarization force acting on massive charged dust grains is investigated analytically on the Jeans instability of self-gravitating dusty plasma. The gravitational force acting on the massive negatively charged interstellar dust grains are considered in presence of both electrical and polarization forces. The basic equations of the problem are formulated and a general dispersion relation is obtained using plane wave approximation in low frequency wave mode. The effect of polarization force in the dispersion relation of the problem, condition of the Jeans instability and expression of the critical Jeans wave number is examined. The unstable growing modes due to self-gravitational force are studied in the situation when polarization force on the dust grain exceeds over the electrical force in magnitude. It is observed that the polarization force increases the growth rate of the system.  相似文献   

18.
《Physics letters. A》1998,237(3):146-151
The Jeans stability of dusty plasmas is re-considered. In contrast to a gas, a dusty plasma can support a plethora of wave modes each potentially able to impart to the dust particles the randomising energy necessary to avoid Jeans collapse on some length scale. Consequently, the analysis of the stability to Jeans collapse is many-fold more complex in a dusty plasma than it is for a charge-neutral gas. After recalling some of the fundamental ideas related to the ordinary Jeans instability in neutral gases, we extend the discussion to plasmas containing charged dust grains. Besides the usual Jeans criterion based upon thermal agitation, we consider two other ways of countering the gravitational collapse: (i) via the excitation of dust-acoustic modes and (ii) via a novel Alfvén-Jeans instability, where perturbations of the dust mass-loaded magnetic field counter the effects of self-gravitation. These two mechanisms yield different minimum threshold length scales for the onset of instability/condensation. It is pointed out that for the study of the Jeans instability produced by density enhancements induced in the plasma by the presence of normal wave modes, even more prohibitive plasma size constraints must necessarily be satisfied.  相似文献   

19.
The modulational instability (MI) criteria of dust-ion-acoustic (DIA) waves (DIAWs) have been investigated in a four-component pair-ion plasma having inertial pair ions, inertialess non-thermal non-extensive electrons, and immobile negatively charged massive dust grains. A nonlinear Schrödinger equation (NLSE) is derived by using reductive perturbation method. The nonlinear and dispersive coefficients of the NLSE can predict the modulationally stable and unstable parametric regimes of DIAWs and associated first and second-order DIA rogue waves (DIARWs). The MI growth rate and the configuration of the DIARWs are examined, and it is found that the MI growth rate increases (decreases) with increasing the number density of the negatively charged dust grains in the presence (absence) of the negative ions. It is also observed that the amplitude and width of the DIARWs increase (decrease) with the negative (positive) ion mass. The implications of the results to laboratory and space plasmas are briefly discussed.  相似文献   

20.
BP Pandey  Vinod Krishan  M Roy 《Pramana》2001,56(1):95-105
The effect of the radiative cooling of electrons on the gravitational collapse of cold dust grains with fluctuating electric charge is investigated. We find that the radiative cooling as well as the charge fluctuations, both, enhance the growth rate of the Jeans instability. However, the Jeans length, which is zero for cold grains and nonradiative plasma, becomes finite in the presence of radiative cooling of electrons and is further enhanced due to charge fluctuations of grains resulting in an increased threshold of the spatial scale for the Jeans instability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号