首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New selenidoantimonats [Ni(dien)2]2Sb2Se6 ( 1 ), [Mn(dien)2]2(SbSe4)(Cl) ( 2 ), [Co(dien)2]2(SbSe4)(Br) ( 3 ), and [Co(dien)2]3(SbSe4)2 ( 4 ) (dien = diethylenetriamine) were solvothermally synthesized in dien solvent at 180 °C. The crystal structure of 1 consists of two octahedral [Ni(dien)2]2+ cations and a mixed‐valent [Sb2Se6]4? anion. The isolated [Sb2Se6]4? anion is formed by a SbIIISe3 trigonal pyramid and a SbVSe4 tetrahedron sharing a common corner. 2 and 3 are composed of octahedral [M(dien)2]2+ cations, tetrahedral [SbSe4]3? anions and halide ions forming an extended network through hydrogen‐bonding interactions. In 4 the [Co(1)(dien)2]2+, [Co(2)(dien)2]2+ and [SbSe4]3? ions form layered structures via N–H···Se hydrogen bonds. The [Co(3)(dien)2]2+ ion is located between the layers, and interacts with the layers by N–H···Se bonds. The synthesis and solid state structural studies on the title compounds show that the higher reaction temperature is helpful for the formation of selenidoantimonate(V) compounds in the synthesis of selenidoantimonate from the M2+/Sb/Se/dien system. 1 – 4 start to decompose at temperature about 210 °C in N2 atmosphere. They lose dien ligands at a wide temperature range of 210–450 °C with multisteps for 1 – 3 and a single step for 4 .  相似文献   

2.
The two novel compounds, [Mn(tren)]Sb2S4 (1 and 2), were obtained by the reaction of elemental Mn, Sb, and S in aqueous solutions of tren (tren = tris(2-aminoethyl)amine, C6H18N4) after different reaction times. Compound 1 is formed up to a reaction time of 13 d, and an extension of the reaction time leads to the formation of 2. Both compounds crystallize in monoclinic space groups (1, P2(1)/c; 2, C2/c). In 1, the two unique SbS3 trigonal pyramids share a common S atom to form a Sb2S5 unit. Two S atoms of this group have a bond to Mn2+ yielding a MnSb2S3 heteroring in the boat conformation. The Sb2S5 moieties are joined via common corners into the final undulated [Sb2S4]2- anion which is directed along [001]. The structure of 2 contains the [Mn(tren)]2+ ion, one SbS3 pyramid, and a SbS4 unit. Two symmetry-related SbS4 groups share an edge, forming a Sb2S6 group containing a Sb2S2 ring. This group is joined via corners to two SbS3 pyramids on both sides producing a Sb4S4 ring. The Sb2S2 and Sb4S4 rings are condensed into the final [Sb2S4]2- anion which runs along [010]. The [Mn(tren)] groups are bound to the thioantimonate(III) backbone on opposite sides of the Sb4S4 ring, and a small MnSbS2 ring is formed. In both structures, weak S...H bonds are found which may contribute to the stability of the materials. The two compounds decompose in one step upon heating, and only MnS and Sb2S3 could be identified as the crystalline part of the decomposition products. Both compounds can also be prepared under solvothermal conditions using MnSb2S4 as starting material. Compounds 1 and 2 are obtained from this ternary material in a high yield.  相似文献   

3.
The novel copper(I)-thioantimonates(III) (C(6)N(2)H(18))(0.5)Cu(2)SbS(3) (I) (C(6)N(2)H(16) = 1,6-diaminohexane), (C(4)N(3)H(15))(0.5)Cu(2)SbS(3) (II) (C(4)N(3)H(13) = diethylenetriamine), (C(8)N(4)H(22))(0.5)Cu(2)SbS(3) (III) (C(8)N(4)H(20) = 1,4-bis(2-aminoethyl)piperazine), (C(4)N(3)H(14))Cu(3)Sb(2)S(5) (IV) (C(4)N(3)H(13) = diethylenetriamine), and (C(6)N(4)H(20))(0.5)Cu(3)Sb(2)S(5) (V) (C(6)N(4)H(18) = triethylenetetramine) were synthesized under solvothermal conditions reacting Sb, Cu, and S with the amines. The compounds I-III belong to the RCu(2)SbS(3) structure family (R = amine) and are built up of trigonal SbS(3) pyramids and two CuS(3) moieties forming 6-membered (6 MR) and 10-membered (10 MR) rings. The rings are condensed yielding single layers which are joined into [Cu(2)SbS(3)](-) double layers via Cu-S bonds. The organic ions are located between the anionic layers, and the shortest interlayer distances are 7.8 Angstroms (I), 7.4 Angstroms (II), and 8.8 Angstroms (III). The structure of the novel inorganic-organic hybrid compound IV contains one SbS(3) group, one SbS(4) unit, two CuS(3) triangles, and one CuS(4) tetrahedron. These units are joined into four-membered (4 MR) and six-membered rings (6 MR) forming a hitherto unknown strong undulated layered (Cu(3)Sb(2)S(5))(-) anion. Anions and cations are arranged in a sandwichlike manner with an interlayer distance of 6.184 A. The new composite V contains an anion with the same chemical composition as compound IV, but the structure exhibits a unique and different network topology which is constructed by two SbS(3) pyramids, two CuS(3) triangles, and one CuS(4) tetrahedron. These units are joined into 6 MR which may be described as an inorganic graphene-like layer or as a 6(3) net. Two such layers are connected via Cu-S bonds into the final double layer. The interlayer distance amounts to 6.44 Angstroms. All compounds decompose in a more or less complex manner when heated in an inert atmosphere.  相似文献   

4.
Jia D  Zhao J  Pan Y  Tang W  Wu B  Zhang Y 《Inorganic chemistry》2011,50(15):7195-7201
The polyselenidoarsenates [Fe(phen)(3)][As(2)Se(6)] (1), [Zn(phen)(dien)][As(2)Se(6)]·2phen (2), [{Mn(phen)(2)}(2)(μ-η(2),η(2)-AsSe(4))](2)[As(2)Se(6)]·H(2)O (3), and [Ni(phen)(3)][As(2)Se(2)(μ-Se(3))(μ-Se(5))] (4) (dien = diethylenetriamine and phen = 1,10-phenanthroline) were prepared by the reaction of As(2)O(3), Se, dien, and phen in the presence of transition metals in a methanol solvent under solvothermal conditions. Compounds 1-3 consist of [As(2)Se(6)](2-) anions with [Fe(phen)(3)](2+), [Zn(phen)(dien)](2+), and [{Mn(phen)(2)}(2)(μ-η(2),η(2)-AsSe(4))](+) complex counter cations, respectively. The [As(2)Se(6)](2-) anion is formed from two As(III)Se(3) trigonal pyramids linked through two Se-Se bonds. Compound 3 is the first example of a mixed-valent selenidoarsenate(III,V) and exhibits the coexistence of As(III)Se(3) trigonal pyramidal and As(V)Se(4) tetrahedral units. Compound 4 is composed of a helical chain of [As(2)Se(2)(μ-Se(3))(μ-Se(5))(2-)](∞) and octahedral [Ni(phen)(3)](2+) cations. The [As(2)Se(2)(μ-Se(3))(μ-Se(5))(2-)](∞) chain is constructed from AsSe(+) units alternatively linked by μ-Se(3)(2-) and μ-Se(5)(2-) bridging ligands. When the structures of compounds 1-4 are compared, the transition metal ions show different structural directing effects during the synthesis of arsenic polyselenides in methanol. Compounds 1, 2, 3, and 4 exhibit semiconducting properties with band gaps of 1.88, 2.29, 1.82, and 2.01 eV, respectively.  相似文献   

5.
Lam R  Mar A 《Inorganic chemistry》1996,35(24):6959-6963
The new Zintl phase dibarium tritin hexaantimonide, Ba(2)Sn(3)Sb(6) has been synthesized, and its structure has been determined by single-crystal X-ray diffraction methods. It crystallizes in the orthorhombic space group -Pnma with a = 13.351(1) ?, b = 4.4100(5) ?, c = 24.449(3) ?, and Z = 4 (T = -50 degrees C). The structure of Ba(2)Sn(3)Sb(6) comprises large channels [010] defined by 30-membered rings constructed from an anionic framework. This framework is built up from Sn-centered trigonal pyramids and tetrahedra, as well as zigzag chains of Sb atoms. Within the channels reside the Ba(2+) cations and additional isolated zigzag Sb-Sb chains. The simultaneous presence of Sn trigonal pyramids and tetrahedra implies that Ba(2)Sn(3)Sb(6) is a mixed-valence compound whose oxidation state notation can be best represented as (Ba(2+))(2)[(Sn(II))(2)(Sn(IV))(Sb(-)(III))(3)(Sb(-)(I))](2)(-)[(Sb(-)(I))(2)](2)(-).  相似文献   

6.
《结构化学》2021,40(7)
A new quaternary selenide Ba|_4Sn_3GeSe_9 was synthesized by high temperature solid state reaction method and fully characterized by elemental analysis, UV-vis spectrum, and single-crystal X-ray diffraction. The title compound crystallizes in the orthorhombic space group Pnma with a = 12.463(3), b = 9.308(2) and c = 17.892(5) ?. Ba|_4Sn_3GeSe_9 can be characterized by a zero-dimensional compound composed by special [GeSnSe_5]~(4-) units, [Sn_2Se_4]~(4-) units and the adjacent cations Ba~(2+) ions. The [GeSn Se5]4-unit is composed of a SnSe_3 trigonal pyramid formed by divalent Sn~(2+) and edge-sharing with a GeSe_4 tetrahedron, and the [Sn_2Se_4]-unit is composed of two Sn Se_3 trigonal pyramids. Ba|_4Sn_3GeSe_9 is an indirect semiconductor with a band gap of 1.21 eV.  相似文献   

7.
A new selenidoarsenate [Co(en)3]2As2Se5 1 (en = ethylenediamine) was synthesized by a reaction of AsCl3, COCl2·6H2O and Se in en under mild solvothermal conditions, and the structure was determined by single-crystal X-ray diffraction. 1 crystallizes in the orthorhombic system, space group Pbca with a = 15.5092(12), b = 11.5756(9), c = 17.8138(14) (A), V= 3198.1(4)(A)3, Mr = 1023.12, Z = 4, Dc = 2.125 g/cm3,μ = 8.807 mm-1, F(000) = 1976, S = 1.171, the final R =0.0591 and wR = 0.1067 for 3170 observed reflections with I > 2σ(Ⅰ). 1 consists of isolated dimeric[As2Se5]4- anion constructed by two comer-sharing AsSe3 trigonal pyramids and transition metal [Co(en)3]2+ cations. The optical absorption property and thermal stability of 1 are reported.  相似文献   

8.
(H_2en)_2[Se_2Mo_5O_(21)]2H_2O的水热合成、晶体结构与光谱研究   总被引:4,自引:0,他引:4  
在水热条件下, 以SeO2、V2O5、MoO3、K2CO3、en(乙二胺)作为起始原料, 得到了标题化合物(H2en)2[Se2Mo5O21]2H2O, 利用IR、UV、荧光光谱、单晶-X射线衍射等方法对其进行了表征。结构测定表明, 该化合物属于正交晶系, 空间群: P212121, 化学式: C4H24- Mo5N4O23Se2, 晶胞参数: a = 12.1386(7), b = 17.7118(8), c =11.7092(5) ? V = 2517.4(2) ?, Z = 4, Dc = 2.987 g/cm3, Mr = 1133.89, m = 5.419 mm-1, F(000) = 2144, 最终结构偏离因子R = 0.0285, wR = 0.0400, S = 0.904。该化合物由2个双质子化的en、2个H2O分子以及杂多阴离子[Se2Mo5O21]4-组成。其中,杂多阴离子由5个畸变的MoO6八面体以共边或共顶点形式连接构成一个平面骨架; 2个畸变的SeO3四面体和MoO6八面体以共顶点形式连接, 且位于平面的两侧;质子化的en位于4个[Se2Mo5O21]4-离子围成的四面体空位中, 与杂多阴离子和水分子通过氢键连接成无限三维结构。最后我们用B3LYP方法研究了阴离子簇的电子结构。  相似文献   

9.
Smith DM  Park CW  Ibers JA 《Inorganic chemistry》1996,35(23):6682-6687
2.2.2-Cryptand(1+) salts of the [Sb(2)Se(4)](2)(-), [As(2)S(4)](2)(-), [As(10)S(3)](2)(-), and [As(4)Se(6)](2)(-) anions have been synthesized from the reduction of binary chalcogenide compounds by K in NH(3)(l) in the presence of the alkali-metal-encapsulating ligand 2.2.2-cryptand (4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane), followed by recrystallization from CH(3)CN. The [Sb(2)Se(4)](2)(-) anion, which has crystallographically imposed symmetry 2, consists of two discrete edge-sharing SbSe(3) pyramids with terminal Se atoms cis to each other. The Sb-Se(t) bond distance is 2.443(1) ?, whereas the Sb-Se(b) distance is 2.615(1) ? (t = terminal; b = bridge). The Se(b)-Sb-Se(t) angles range from 104.78(4) to 105.18(5) degrees, whereas the Se(b)-Sb-Se(b) angles are 88.09(4) and 88.99(4) degrees. The (77)Se NMR data for this anion in solution are consistent with its X-ray structure (delta 337 and 124 ppm, 1:1 intensity, -30 degrees C, CH(3)CN/CD(3)CN). Similar to this [Sb(2)Se(4)](2)(-) anion, the [As(2)S(4)](2)(-) anion consists of two discrete edge-sharing AsS(3) pyramidal units. The As-S(t) bond distances are 2.136(7) and 2.120(7) ?, whereas the As-S(b) distances range from 2.306(7) to 2.325(7) ?. The S(b)-As-S(t) angles range from 106.2(3) to 108.2(3) degrees, and the S(b)-As-S(b) angles are 88.3(2) and 88.9(2) degrees. The [As(10)S(3)](2)(-) anion has an 11-atom As(10)S center composed of six five-membered edge-sharing rings. One of the three waist positions is occupied by a S atom, and the other two waist positions feature As atoms with exocyclic S atoms attached, making each As atom in the structure three-coordinate. The As-As bond distances range from 2.388(3) to 2.474(3) ?. The As-S(t) bond distances are 2.181(5) and 2.175(4) ?, and the As-S(b) bond distance is 2.284(6) ?. The [As(4)Se(6)](2)(-) anion features two AsSe(3) units joined by Se-Se bonds with the two exocyclic Se atoms trans to each other. The average As-Se(t) bond distance is 2.273(2) ?, whereas the As-Se(b) bond distances range from 2.357(3) to 2.462(2) ?. The Se(b)-As-Se(t) angles range from 101.52(8) to 105.95(9) degrees, and the Se(b)-As-Se(b) angles range from 91.82(7) to 102.97(9) degrees. The (77)Se NMR data for this anion in solution are consistent with its X-ray structure (delta 564 and 317 ppm, 3:1 intensity, 25 degrees C, DMF/CD(3)CN).  相似文献   

10.
31P solid-state nuclear magnetic resonance (NMR) spectra of 12 metal-containing selenophosphates have been examined to distinguish between the [P(2)Se(6)](4-), [PSe(4)](3-), [P(4)Se(10)](4-), [P(2)Se(7)](4-), and [P(2)Se(9)](4-) anions. There is a general correlation between the chemical shifts (CSs) of anions and the presence of a P[bond]P. The [P(2)Se(6)](4-) and [P(4)Se(10)](4-) anions both contain a P[bond]P and resonate between 25 and 95 ppm whereas the [PSe(4)](3-), [P(2)Se(7)](4-), and [P(2)Se(9)](4-) anions do not contain a P[bond]P and resonate between -115 and -30 ppm. The chemical shift anisotropies (CSAs) of compounds containing [PSe(4)](3-) anions are less than 80 ppm, which is significantly smaller than the CSAs of any of the other anions (range: 135-275 ppm). The smaller CSAs of the [PSe(4)](3-) anion are likely due to the unique local tetrahedral symmetry of this anion. Spin-lattice relaxation times (T(1)) have been determined for the solid compounds and vary between 20 and 3000 s. Unlike the CS, T(1) does not appear to correlate with P-P bonding. (31)P NMR is also shown to be a good method for impurity detection and identification in the solid compounds. The results of this study suggest that (31)P NMR will be a useful tool for anion identification and quantitation in high-temperature melts.  相似文献   

11.
1 INTRODUCTION The mild solvothermal synthesis with the presence of a structure-directing agent is proved to be a versa- tile route for the preparation of chalcogenidometa- lates of the heavier group (14 and 15) elements[1~3]. Templated by the transition metal complex cations, a large number of chalcogenidoantimonates containing transition metal complex ions have been synthesized by solvothermal method, such as Mn2(en)2Sb2S5[4], [Co(en)3]CoSb4S8[5], [M(en)3]Sb2S4 (M = Co, Ni)[6], [N…  相似文献   

12.
[M(en)3]2Sn2Se6(M=Mn,Zn)的制备及其热稳定性   总被引:4,自引:0,他引:4  
陈震  王如骥 《物理化学学报》1999,15(12):1070-1075
用有机溶剂热生长技术(SolvothermalTechnique)制备过渡金属锰和锌硒化物[Mn(en)3]2Sn2Se6(Ⅰ),[Zn(en)3]2Sn2Se6(Ⅱ).用单晶X射线衍射技术对其进行晶体结构分析.[Zn(en)3]2Sn2Se6样品的热分析结果表明,该化合物的热分解分三步进行.光学性质测试表明它们是半导体材料,[Mn(en)3]2Sn2Se6的能带隙为1.76eV.[Zn(en)3]2Sn2Se6的能带隙为2.49eV.  相似文献   

13.
Reaction of AgBF(4), KNH(2), K(2)Se, Se, and [2.2.2]-cryptand in acetonitrile yields [K([2.2.2]-cryptand)](4)[Ag(4)(Se(2)C(2)(CN)(2))(4)] (1). In the unit cell of 1 there are four [K([2.2.2]-cryptand)](+) units and a tetrahedral Ag(4) anionic core coordinated in mu(1)-Se, mu(2)-Se fashion by each of four mns ligands (mns = maleonitrilediselenolate, [Se(2)C(2)(CN)(2)](2)(-)). Reaction of AgNO(3), Na(2)(mnt) (mnt = maleonitriledithiolate, [S(2)C(2)(CN)(2)](2)(-)), and [2.2.2]-cryptand in acetonitrile yields [Na([2.2.2]-cryptand)](4)[Ag(4)(mnt)(4)].0.33MeCN (2). The Ag(4) anion of 2 is analogous to that in 1. Reaction of AgNO(3), Na(2)(mnt), and [NBu(4)]Br in acetonitrile yields [NBu(4)](4)[Ag(4)(mnt)(4)] (3). The anion of 3 also comprises an Ag(4) core coordinated by four mnt ligands, but the Ag(4) core is diamond-shaped rather than tetrahedral. Reaction of [K([2.2.2]-cryptand)](3)[Ag(mns)(Se(6))] with KNH(2) and [2.2.2]-cryptand in acetonitrile yields [K([2.2.2]-cryptand)](3)[Ag(mns)(2)].2MeCN (4). The anion of 4 comprises an Ag center coordinated by two mns ligands in a tetrahedral arrangement. Reaction of AgNO(3), 2 equiv of Na(2)(mnt), and [2.2.2]-cryptand in acetonitrile yields [Na([2.2.2]-cryptand)](3)[Ag(mnt)(2)] (5). The anion of 5 is analogous to that of 4. Electronic absorption and infrared spectra of each complex show behavior characteristic of metal-maleonitriledichalcogenates. Crystal data (153 K): 1, P2/n, Z = 2, a = 18.362(2) A, b = 16.500(1) A, c = 19.673(2) A, beta = 94.67(1) degrees, V = 5941(1) A(3); 2, P4, Z = 4, a= 27.039(4) A, c = 15.358(3) A, V = 11229(3) A(3); 3, P2(1)/c, Z = 6, a = 15.689(3) A, b = 51.924(11) A, c = 17.393(4) A, beta = 93.51(1) degrees, V = 14142(5) A(3); 4, P2(1)/c, Z = 4, a = 13.997(1) A, b = 21.866(2) A, c = 28.281(2) A, beta = 97.72(1) degrees, V = 8578(1) A(3); 5, P2/n, Z = 2, a = 11.547(2) A, b = 11.766(2) A, c = 27.774(6) A, beta = 91.85(3) degrees, V = 3772(1) A(3).  相似文献   

14.
Xue G  Liu X  Xu H  Hu H  Fu F  Wang J 《Inorganic chemistry》2008,47(6):2011-2016
A new type of heteropolyanion containing mixed-valence antimony, [Sb4(V)Sb2(III)Mo18O73(H2O)2](12-) (1a), and its four derivatives, {M(H2O)2[Sb4(V)Sb2(III)Mo18O73(H2O)2]2}(22-) (M = Mn(II), Fe(II), Cu(II), or Co(II)) (2a-5a), have been isolated as ammonium salt, and their structures were determined by single-crystal X-ray diffraction. The framework of the polyanion 1a displays a curious asymmetric structure, and there exist six types of Sb coordination environments and seven types of {MoO6} octahedra. The title compounds were also characterized by elemental analyses, IR, UV-vis, Raman spectra, and cyclic voltammogramms.  相似文献   

15.
The novel thioantimonate(III) [Ni(dien)2]9Sb22S42 · 0.5H2O was synthesised under solvothermal conditions by reacting elemental Ni, Sb and S in an aqueous solution of diethylenetriamine (dien) (80%). The compound crystallises in the triclinic space group P1¯, a = 8.997(2) Å, b = 15.293(3) Å, c = 34.434(7) Å, α = 85.51(3)°, β = 84.16(3)°, γ = 83.54(3)°, V = 4672.7 (16) Å3, Z = 1. The layered [Sb22S4218—] anion in [Ni(dien)2]9Sb22S42 · 0.5H2O is composed of nine SbS3 trigonal pyramids, one SbS4 and one SbS5 unit. The interconnection of these units by sharing common S atoms yields Sb‐S heterorings of different sizes. Besides the smaller Sb2S2 and Sb3S3 rings a very large Sb30S30 heteroring is observed. The structure directing effect of the [Ni(dien)2]2+ cations is obvious as they are located above and below the pores of the anion. The nine [Ni(dien)2]2+ cations exhibit different conformations. All Ni2+ cations are in an octahedral environment of six N atoms of two dien ligands. The anions and cations are stacked perpendicular to [100] in an alternating fashion.  相似文献   

16.
An inorganic-organic hybrid thioantimonate(Ⅲ) [CH3(CH2)3NH3]2Sb4S7 1 with layered structure was synthesized by solvothermal method. 1 crystallizes in the triclinic system,space group P1 with a=7.0124(11),b=11.919(2),c=14.879(3),α=108.791(3),β=102.441(3),γ=92.846(2)o,V=1140.1(3)3,Mr=859.71,Z=2,Dc=2.504 g/cm3,μ =5.324 mm-1,F(000)=804,S=1.013,the final R=0.0297 and wR=0.0618 for 3534 observed reflections with I > 2σ(I). 1 consists of [C4H9NH3]+ cations and two-dimensional [Sb4S7]n2n- anion which is composed of three SbS3 trigonal pyramids and one SbS4 unit joined by sharing common corners. The anionic layers are stacked perpendicularly to the c axis of the unit cell forming two-dimensional channels between the layers. The [C4H9NH3]+ cations interdigitate in a bilayer and reside in the 2D channels leading to a sandwich-like arrangement of the anion and cations.  相似文献   

17.
Two transition-metal tetrathioarsenate complexes, [Mn(dien)(2)](n)[Mn(dien)AsS(4)](2n).4nH(2)O (1) with one-dimensional water chain and [Mn(en)(3)](2)[Mn(en)(2)AsS(4)][As(3)S(6)] (2) with mixed-valence As(3+)/As(5+) character, have been synthesized and structurally characterized. The tetrathioarsenate(V) anion acts as a novel mu(2)-eta(1),eta(2) ligand in 1 and as a chelating ligand in 2. The two compounds exhibit intriguing semiconducting properties (E(g) = 2.18 eV (1), 2.48 eV (2)) and strong photoluminescence with the emission maximum occurring around 440 nm.  相似文献   

18.
Single crystals of A2ThP3Se9 (A = K (I), Rb (II)) and Cs4Th2PsSe17 (III) form from the reaction of Th and P in a molten A2Se3/Se (A = K, Rb, Cs) flux at 750 degrees C for 100 h. Compound I crystallizes in the triclinic space group P1 (No. 2) with unit cell parameters a = 10.4582(5) A, b = 16.5384(8) A, c = 10.2245(5) A, alpha = 107.637(1); beta = 91.652(1); gamma = 90.343(1) degrees, and Z = 2. Compound II crystallizes in the triclinic space group P1 (No. 2) with the unit cell parameters a = 10.5369(5) A, b = 16.6914(8) A, c = 10.2864(5) A, alpha = 107.614(1) degrees, beta = 92.059(1) degrees, gamma = 90.409(1) degrees, and Z = 2. These structures consist of infinite chains of corner-sharing [Th2Se14] units linked by (P2Se6)4- anions in two directions to form a ribbonlike structure along the [100] direction. Compounds I and II are isostructural with the previously reported K2UP3Se9. Compound III crystallizes in the monoclinic space group P2(1)/c (No. 14) with unit cell parameters a = 10.238(1) A, b = 32.182(2) A, c = 10.749(1) A; beta = 95.832(1) degrees, and Z = 4. Cs4Th2P5Se17 consists of infinite chains of corner-sharing, polyhedral [Th2Se13] units that are also linked by (P2Se6)4- anions in the [100] and [010] directions to form a layered structure. The structure of III features an (Se2)2- anion that is bound eta 2 to Th(2) and eta 1 to Th(1). This anion influences the coordination sphere of the 9-coordinate Th(2) atom such that it is best described as bicapped trigonal prismatic where the eta 2-bound anion occupies one coordination site. The composition of III may be formulated as Cs4Th2(P2Se6)5/2(Se2) due to the presence of the (Se2)2- unit. Raman spectra for these compounds and their interpretation are reported.  相似文献   

19.
The rare-earth metal(III) oxide selenides of the formula La4O4Se[Se2], Ce4O4Se[Se2], Pr4O4Se[Se2], Nd4O4Se[Se2], and Sm4O4Se[Se2] were synthesized from a mixture of the elements with selenium dioxide as the oxygen source at 750 degrees C. Single crystal X-ray diffraction was used to determine their crystal structures. The isostructural compounds M4O4Se[Se2] (M=La, Ce, Pr, Nd, Sm) crystallize in the orthorhombic space group Amm2 with cell dimensions a=857.94(7), b=409.44(4), c=1316.49(8) pm for M=La; a=851.37(6), b=404.82(3), c=1296.83(9) pm for M=Ce; a=849.92(6), b=402.78(3), c=1292.57(9) pm for M=Pr; a=845.68(4), b=398.83(2), c=1282.45(7) pm for M=Nd; and a=840.08(5), b=394.04(3), c=1263.83(6) pm for M=Sm (Z=2). In their crystal structures, Se2- anions as well as [Se-Se]2- dumbbells interconnect {[M4O4]4+} infinity 2 layers. These layers are composed of three crystallographically different, distorted [OM4]10+ tetrahedra, which are linked via four common edges. The compounds exhibit strong Raman active modes at around 215 cm(-1), which can be assigned to the Se-Se stretching vibration. Optical band gaps for La4O4Se[Se2], Ce4O4Se[Se2], Pr4O4Se[Se2], Nd4O4Se[Se2], and Sm4O4Se[Se2] were derived from diffuse reflectance spectra. The energy values at which absorption takes place are typical for semiconducting materials. For the compounds M4O4Se[Se2] (M=La, Pr, Nd, Sm) the fundamental band gaps, caused by transitions from the valence band to the conduction band (VB-CB), lie around 1.9 eV, while for M=Ce an absorption edge occurs at around 1.7 eV, which can be assigned to f-d transitions of Ce3+. Magnetic susceptibility measurements of Ce4O4Se[Se2] and Nd4O4Se[Se2] show Curie-Weiss behavior above 150 K with derived experimental magnetic moments of 2.5 micro B/Ce and 3.7 micro B/Nd and Weiss constants of theta p=-64.9 K and theta p=-27.8 K for the cerium and neodymium compounds, respectively. Down to 1.8 K no long-range magnetic ordering could be detected. Thus, the large negative values for theta p indicate the presence of strong magnetic frustration within the compounds, which is due to the geometric arrangement of the magnetic sublattice in form of [OM4]10+ tetrahedra.  相似文献   

20.
Two novel lanthanide selenidoarsenates(v) [Ln(dien)2(micro(3)-AsSe(4))] (Ln = Nd 1, Sm 2, dien = diethylenetriamine) were synthesized by the reactions of As(2)O(3) and Se with Nd(2)O(3) or Sm(2)O(3) in dien under solvothermal conditions. 1 and 2 are in the orthorhombic crystal system with Iba2 and Pbca space groups, respectively. The [AsSe(4)](3-) anion acts as a tridentate micro(3)-AsSe(4) ligand to bridge the lanthanide [Ln(dien)2](3+) complexes leading to one-dimensional neutral [Ln(dien)(2)(micro(3)-AsSe(4))](infinity) chains. The chains contact through hydrogen bonding to form network structures. The lanthanide center lies within a nine-coordinated environment involving six N atoms of two dien ligands and three Se atoms of two different tetrahedral [AsSe(4)](3-) anions forming a distorted monocapped square antiprism. The novel coordination polymers [Nd(dien)2(micro(3)-AsSe(4))](infinity) and [Sm(dien)2(micro(3)-AsSe(4))](infinity) are the first examples of solvothermally synthesized selenidoarsenates with [AsSe(4)](3-) anion acting as a ligand in lanthanide complexes. The band gaps of 2.11 eV for 1, and 2.18 eV for 2 have been derived from optical absorption spectra. TG-DSC curves show that two compounds remove coordinated dien ligands in a single step.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号