首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interaction of some diamines (ethylenediamine (EDA), 1,6-hexanediamine (HDA), o-phenylenediamine (OPD)) with CdSe quantum dots (QDs) is reported. With increasing concentration of EDA from 0 to 2.0 x 10(-6) mol l(-1), slight fluorescence enhancement is observed. However, the CdSe QDs fluorescence quenching is seen at relatively higher concentration of EDA. There is a red-shift of 0-7 nm in fluorescence emission spectra of CdSe QDs when the concentration of EDA is changed from 2.0 x 10(-6) to 8.0 x 10(-6) mol l(-1). The resonance light scattering (RLS) spectra of CdSe QDs have little change when the concentration of EDA is less than 5.0 x 10(-6) mol l(-1). It indicates there are little large particles formed in the solution. However, a significant increase of the RLS is observed in the 300-500 nm wavelength range after adding higher concentration than 5.0 x 10(-6) mol l(-1) EDA, which could be attributed to the large particles formed. The interaction between HDA and CdSe QDs is similar to that of EDA. However, with the OPD, it is found that the interaction is much different from those of EDA, HDA, and that the quenching, even at low concentration, is effective for CdSe QDs emission. The quenching phenomenon could be explained by a surface bound complexation equilibrium model.  相似文献   

2.
Xia Y  Zhu C 《The Analyst》2008,133(7):928-932
Type-II core/shell CdTe/CdSe quantum dots (QDs) were synthesized in aqueous medium by employing thiol-capped CdTe QDs as core template and CdCl(2) and Na(2)SeSO(3) as shell precursors, respectively. Compared with the original CdTe cores, the core/shell CdTe/CdSe QDs showed an obvious red-shifted emission with the color-tune capability to the near-infrared (NIR) wavelength, because of the formation of an indirect excitation. The prepared QDs exhibited high stability and moderate fluorescence quantum yields (10-20%), and their core/shell heterostructure was characterized by UV-vis absorption, steady-state and time-resolved fluorescence spectra, X-ray powder diffraction, X-ray photoelectron spectroscopy and high-resolution transmission electron microscopy. The fluorescence of the core/shell QDs could be markedly quenched by Cu(II), and approximate concentrations of other physiologically important cations, such as Zn(II), Ca(II), Na(I) and K(I) etc., had no effect on the fluorescence. Based on this, a simple and rapid method for Cu(II) determination was proposed using the NIR CdTe/CdSe QDs as fluorescent probes. Under optimal conditions, the response was linearly proportional to the concentration of Cu(II) between 0.05 to 50.0 x 10(-6) mol L(-1), the limit of detection was 2.0 x 10(-8) mol L(-1). The developed method was successfully applied to the detection of trace Cu(II) in real samples.  相似文献   

3.
Highly luminescent uncoated water-soluble and mono-disperse CdSe nanoparticles (NPs) have been prepared facilely. Uncoated CdSe core NPs possessing a good size distribution was accompanied with long wavelength of fluorescence emission. It is interesting to note that these functionalized NPs are soluble in water medium stably for more than 1 month, and no significant changes were found in the optical characteristics in comparison with fresh CdSe NPs prepared. The functionalized CdSe NPs exhibited strong specific affinity for mercury(II) through their surface functional groups. Based on the significant quenching of fluorescence emission of functionalized CdSe NPs with a long-wavelength 630nm, a simple, rapid and specific detection for Hg(II) was proposed. Under optimum conditions, the response of linearly proportional to the concentration of Hg(II) is between 0mol/L and 1.25x10(-6)mol/L, and the limit of detection is 4.50x10(-9)mol/L. The relative standard deviation (R.S.D.) of six replicate measurements is 2.0% for 2.0x10(-7)mol/L of Hg(II). In terms of fluorescence quenching at 630nm of CdSe NPs, no obvious wavelength shift or no new emission band in presence of Hg(II) at pH 7.50 of phosphate buffer solution were found; furthermore, a significant reduction in absorbance at 230nm of CdSe NPs was first observed in our work. We could speculate that Hg(II) as an effective quencher (even at low concentration) for functionalized CdSe NPs emission suggests that it is capable of directly intercepting one of the charge carriers, thus disrupting the recombination process.  相似文献   

4.
Xia YS  Zhu CQ 《Talanta》2008,75(1):215-221
Thioglycolic acid (TGA)-capped CdTe quantum dots (QDs) were synthesized in aqueous medium, and their interaction with metal cations was studied with UV-vis absorption, steady-state and time-resolved fluorescence spectra. The results demonstrated that Hg(II), Cu(II) and Ag(I) could effectively quench the QD emission based on different action mechanisms: Cu(II) and Ag(I) quenched CdTe QDs because they bound onto particle surface and facilitated non-radiative electron/hole recombination annihilation of QDs; electron transfer process between the capping ligands and Hg(II) was mainly responsible for the remarkable quenching effect of Hg(II). To prevent the approach of metal cations to QD core, the original TGA-capped CdTe QDs were further coated by denatured bovine serum albumin (dBSA). It was found that the dBSA-coated CdTe QDs could be quenched effectively by Hg(II), but Cu(II) and Ag(I) could hardly quench the QDs even at fairly higher concentration levels because the dBSA shell layer effectively prevented the binding of metal cations onto the QD core. On the basis of this fact, a simple, rapid and specific method for Hg(II) determination was proposed. Under optimal conditions, the quenched fluorescence intensity increased linearly with the concentration of Hg(II) ranging from 0.012 x 10(-6) to 1.5 x 10(-6) mol L(-1). The limit of detection for Hg(II) was 4.0 x 10(-9) mol L(-1). The developed method was successfully applied to the detection of trace Hg(II) in real samples.  相似文献   

5.
Luminescence effect of silver nanoparticle in water phase   总被引:4,自引:0,他引:4  
Yellow silver nanoparticles in water phase were prepared by microwave synthesis method. Study found that there is a fluorescence peak at 465 nm and a strongest resonance scattering peak at 460 nm for the nanoparticles. The resonance scattering intensity at 465 nm I(460 nm). fluorescence intensity at 465 nm F(465)(nm) and absorbance at 455 nm A(455 nm) were found linear to the concentration c(Ag) in the range from 0 to 3.5x10(-4)mol/L Ag, with linear regression equation for I(460 nm)=48.1x10(4) c(Ag)+3.69 and F(465 nm)=28.7x10(4)c(Ag)+3.50 and A(455 nm)1.23x10(4)c(Ag)+0.01, their regression coefficient for 0.9976, 0.9954 and 0.9957, respectively. When the c(Ag) was over 3.5x10(-4)mol/L, the resonance scattering peak and fluorescence peak of 465 nm take place red-shift and display luminescence quenching, but the absorption peak place does not change and the absorption intensity enhances. The paper reports the spectral properties of silver nanoparticles in water phase, and offers the principle of interface luminescence electron to state the luminescence effect of silver nanoparticles.  相似文献   

6.
The self-assembled chitosan CdSe quantum dots (QDs) and chitosan CdSe-ZnS core-shell QDs films have been prepared by using layer-by-layer electrostatic technique. The well-ordered nanostructure and the layer-by-layer deposition of the QDs are revealed by AFM and exciton absorption spectra, respectively. The optical nonlinearity of the composite films were studied by using Z-scan technique with femtosecond pulses at the wavelength of 790 nm, the value of third-order susceptibility of core-shell QDs are measured to be about 1.1 x 10(-8) esu, which is about 200% larger than that of CdSe QDs of 5.3 x 10(-9) esu. This has potential applications in all-optical switches in optical information processing.  相似文献   

7.
A novel, sensitive and convenient determine technology based on the quenching of the fluorescence intensity of functionalized CdS quantum dots by sulfadiazine was proposed. Luminescent CdS semiconductor quantum dots (QDs) modified by thioglycollic acid (TGA) were synthesized with the microwave method. The modified CdS QDs are water-soluble, stable and highly luminescent. The possible mechanism for the reaction was also discussed. When sulfadiazine was added into the CdS QDs colloid solution, the surface of CdS QDs generates the electrostatic interaction in aqueous medium, which induces the quenching of fluorescence emission at 489 nm. Under optimum condition, the fluorescence intensity versus sulfadiazine concentration gave a linear response according Stern-Volmer equation with an excellent 0.9981 correlation coefficient. The linearity range of the calibration curve was 1.2 x 10(-5) to 2.13 x 10(-3) mol L(-1). The limit of detection (3delta) is 8.0 micromol L(-1). The relative standard deviation for five determinations of 0.13 x 10(-3)mol L(-1) sulfadiazine is 1.4%. The concentrations of sulfadiazine injections were determined by the proposed method with a satisfactory result.  相似文献   

8.
A silanization technique of hydrophobic quantum dots (QDs) was applied to SiO(2)-coated CdSe/Cd(x)Zn(1-x)S QDs to precisely control the SiO(2) shell thickness and retain the original high photoluminescence (PL) properties of the QDs. Hydrophobic CdSe/Cd(x)Zn(1-x)S core-shell QDs with PL peak wavelengths of 600 and 652 nm were prepared by a facile organic route by using oleic acid (OA) as a capping agent. The QDs were silanized by using partially hydrolyzed tetraethyl orthosilicate by replacing surface OA. These silanized QDs were subsequently encapsulated in a SiO(2) shell by a reverse micelles synthesis. The silanization plays an important role for the QDs to be coated with a homogeneous SiO(2) shell and retain a high PL efficiency in water. Transmission electron microscopy observation shows that the shells are 1-9 nm with final particle sizes of 10-25 nm, depending on the initial QD size. In the case of short reaction time (6 h), the QDs were coated with a very thin SiO(2) layer because no visible SiO(2) shell was observed but transferred into the water phase. The silica coating does not change the PL peak wavelength of the QDs. The full width at half-maximum of PL was decreased 4 nm after coating for QDs emitting at both 600 and 652 nm. The PL efficiency of the SiO(2)-coated is up to 40%, mainly determined by the initial PL efficiency of the underlying CdSe/Cd(x)Zn(1-x)S QDs.  相似文献   

9.
The one‐pot synthesis of water‐soluble and biologically compatible yellow CdSe quantum dots (QDs) featuring the use of glutathione (GSH) as the capping and reducing agent was achieved under aqueous conditions at 150 °C. The synthesized yellow CdSe QDs with quantum yield (QY) up to 20% exhibit zinc blende cubic structure particles with an average diameter of 4‐5 nm. It was found that both molar ratio of Se/Cd and reaction time had a significant effect on size distribution of GSH‐CdSe QDs. Meanwhile, the interaction of QDs bioconjugated to bovine hemoglobin (BHb) was studied by absorption and fluorescence(FL) spectra. With addition of BHb, the FL intensity of CdSe QDs largely quenched due to the static mechanism. The linear range is 5.0 × 10?8 mol/L to 3.0 × 10?6 mol/L, and the correlation coefficient is 0.9991, suggesting that could be used as a probe to label biological molecules and bacterial cells.  相似文献   

10.
A simple and selective method for the determination of silver ions was developed by utilizing the red- shift in emission wavelength of the core-shell CdSe/Cd5 quantum dots (QDs) functionalized with rhodanine upon the addition of Ag+. A linear relationship was observed between the shift and the increase in concentration of Ag+ in the range of 0.0125-12.5 μmol/L. The mechanism of the red-shift was investigated and suggested that the coordination between Ag+ and rhodanine on the QDs surface caused an increase of particle size, which resulted in the red-shift of the QDs' emission wavelength. A detection limit of 2 nmol/L was achieved. The developed method showed superior selectivity and was successfully applied to the determination of silver in environmental samples.  相似文献   

11.
The interaction between CdSe quantum dots (QDs) and hemoglobin (Hb) was investigated by ultraviolet and visible (UV-vis) absorption spectroscopy, Fourier transform infrared (FTIR) spectroscopy, and fluorescence (FL) spectroscopy. The intensity of UV-vis absorption spectrum of a mixture of CdSe QDs and Hb was obviously changed at the wavelength of 406nm at pH 7.0, indicating that CdSe QDs could bind with Hb. The influences of some factors on the interactions between CdSe QDs and Hb were studied in detail. The binding molar ratio of CdSe QDs and Hb was 12:1 by a mole-ratio method. The mechanism of the interaction between CdSe QDs and Hb was also discussed.  相似文献   

12.
The method of simultaneous determination of ofloxacin (OFLX), ciproflxacin (CPLX), and sparfloxacin (SPLX) by thin-layer chromatography is established, with micelle solutions as mobile phases. It is found that the optimum molar ratio of sodium dodecyl sulfate (SDS) to ethylene diamine tetraacetic acid is 0.01:0.1. On the polyamide thin-layer sheet, OFLX, CPLX, and SPLX are separated from each other, and the corresponding Rf values are 0.72, 0.55, and 0.32, respectively. The fluorescence spots are scanned with a spectrodensitometer at the excitation wavelength of 282 nm. The cut-off filter is set at 400 nm. The detection limits are 2 x 10(-6) mol/L for OFLX, 1.5 x 10(-6) mol/L for CPLX, and 1.6 x 10(-6) mol/L for SPLX, and the respective linear ranges correspondingly fell in the concentration of 1 x 10(-5) to 4 x 10(-4) mol/L for OFLX, 1 x 10(-5) to 4.5 x 10(-4) mol/L for CPLX, and 1 x 10(-5) to 4.2 x 10(-4) mol/L for SPLX. For all the three components, the relative standard deviations are in the range of 1.12-5.82%, and the recoveries are found to be 96.7-104.2% in urine and serum samples.  相似文献   

13.
Qin S 《Annali di chimica》2007,97(1-2):59-67
Hemoglobin (Hb) could be used as a substitute of peroxidase in the catalytic oxidation of tetra-substituted amino aluminum phthalocyanine (TAA1Pc) by H2O2. We found that the fluorescence of TAA1Pc (a red-region fluorescent dye with a maximum excitation wavelength at 606 nm and a maximum emission wavelength at 673 nm) could significantly be quenched by H2O2 in the presence of Hb. The value of F0/F (where the relative fluorescence intensity of blank solution and that of the sample solution containing Hb were given by F0 and F, respectively) is linearly related to the concentration of Hb. Based on this, a novel fluorimetric method was developed for the determination of Hb in aqueous solution. Under optimal conditions, Hb could be determined in the concentration range of 5 x 10(-11) - 12 x 10(-8) mol L(-1) with a detection limit of 1.5 x10(-11) mol L(-1). The relative standard deviation of ten replicate measurements was 1.95% for solution containing 1 x10(-9 ) mol L(-1) Hb. The proposed method has been applied to the analysis of Hb in human blood and the results were in good agreement with those reported by a hospital laboratory. So this is a new, high sensitive and precise fluorescence quenching method to determine Hb.  相似文献   

14.
用L-半胱氨酸(L-cysteine)作为稳定剂,以制备的CdTe量子点为核模板,水相合成了具有近红外发光的Ⅱ型核壳CdTe/CdSe半导体量子点。实验考察了合成温度,核模板的尺寸和组分比等因素对合成高质量的CdTe/CdSe量子点的影响。用紫外-可见吸收和荧光光谱研究了合成的量子点的光学性质。在优化的合成条件下,荧光发射光谱在586~753nm范围连续可调,荧光量子产率高达68%;通过X-射线衍射(XRD),X射线光电子能谱(XPS)和透射电镜(TEM)对合成的Ⅱ型核壳CdTe/CdSe量子点进行了结构和形貌表征。  相似文献   

15.
Luminescent quantum dots (QDs)-semiconductor nanocrystals are a promising alternative to organic dyes for fluorescence-based applications. We have developed procedures to use CdS to encapsulate CdTe and synthesize a new kind of functionalized CdTe/CdS QDs for the quantitative and selective determination of bovine serum albumin (BSA). Maximum fluorescence intensity was produced at pH 6.83, with excitation and emission wavelengths at 336 and 524 nm, respectively. Under optimal conditions, the straight line equation: DeltaF=6.84+62.29C (10(-6) mol dm(-3)) was found between the relative fluorescence intensity and the concentration of BSA in the range of 0-1.2 x 10(-6) mol dm(-3), and the limit of detection was 5.4 x 10(-8) mol dm(-3). Based on this approach, a novel quantitative method for the determination of BSA is presented in this paper.  相似文献   

16.
A strategy is presented that involes coupling Na(2)SeO(3) reduction with the binding of silver ions and alanine in a quasi-biosystem to obtain ultrasmall, near-infrared Ag(2)Se quantum dots (QDs) with tunable fluorescence at 90 °C in aqueous solution. This strategy avoids high temperatures, high pressures, and organic solvents so that water-dispersible sub-3 nm Ag(2)Se QDs can be directly obtained. The photoluminescence of the Ag(2)Se QDs was size-dependent over a wavelength range from 700 to 820 nm, corresponding to sizes from 1.5 ± 0.4 to 2.4 ± 0.5 nm, with good monodispersity. The Ag(2)Se QDs are less cytotoxic than other nanomaterials used for similar applications. Furthermore, the NIR fluorescence of the Ag(2)Se QDs could penetrate through the abdominal cavity of a living nude mouse and could be detected on its back side, demonstrating the potential applications of these less toxic NIR Ag(2)Se QDs in bioimaging.  相似文献   

17.
Syntheses of CdTe/CdSe type-II quantum dots (QDs) using CdO and CdCl2 as precursors for core and shell, respectively, are reported. Characterization was made via near-IR interband emission, transmission electron microscopy (TEM), energy dispersive spectroscopy (EDX), and X-ray diffraction (XRD). Femtosecond fluorescence upconversion measurements on the relaxation dynamics of the CdTe core (in CdTe/CdSe) emission and CdTe/CdSe interband emission reveal that as the size of the core increases from 5.3, 6.1 to 6.9 nm, the rate of photoinduced electron separation decreases from 1.96, 1.44 to 1.07 x10(12) s(-1). The finite rates of the initial charge separation are tentatively rationalized by the small electron-phonon coupling, causing weak coupling between the initial and charge-separated states.  相似文献   

18.
The CdTe dots (QDs) coated with 2-Mercaptoethylamine was prepared in aqueous solution and characterized with fluorescence spectroscopy, UV-Vis absorption spectra, high-resolution transmission electron microscopy and infrared spectroscopy. When the λex=350 nm, the fluorescence peak of positively charged CdTe quantum dots is at 592 nm. The uric acid is able to quench their fluorescence. Under optimum conditions, the change of fluorescence intensity is linearly proportional to the concentration of uric acid in the range 0.4000-3.600 μmol L(-1), and the limit of detection calculated according to IUPAC definitions is 0.1030 μmol L(-1). Compared with routine method, the present method determines uric acid in human serum with satisfactory results. The mechanism of this strategy is due to the interaction of the tautomeric keto/hydroxyl group of uric acid and the amino group coated at the CdTe QDs.  相似文献   

19.
The CdSe quantum dots (QDs) modified by mercapto-β-cyclodextrin (CD) were synthesized and characterized by transmission electron microscopy, powder X-ray diffraction, excitation and emission spectra, and fluorescence lifetime. When λex = 370 nm, the fluorescence peak of CdSe/CD QDs is at 525 nm. Phenanthroline (Phen) is able to quench their fluorescence, which can be recovered by the addition of DNA. The quenching and restoration of fluorescence intensity were found to be linearly proportional to the amount of Phen and DNA, respectively. The variation of the fluorescence intensity of the CdSe/CD QDs–Phen system was studied, and it was demonstrated to result from a static mechanism due to the formation of a Phen inclusion complex with the CdSe QDs modified by mercapto-β-cyclodextrin. The fluorescence recovery was due to the binding of DNA with Phen in the inclusion complex, leading to the freeing of the CdSe/CD QDs. The binding constants and sizes of the binding sites of the Phen–DNA interaction were calculated to be 1.33 × 107 mol?1 L and 10.79 bp.  相似文献   

20.
Electrochemiluminescence resonance energy transfer (ECRET) between CdSe/Zns quantum dots (QDs) as the donor and cyanine dye (Cy5) molecules as the acceptor in QD-Cy5 conjugates with DNA or protein as the linker was reported. When a negative potential was applied, the excited-state CdSe/ZnS* was produced in 0.1 mol/L phosphate buffer (pH 7.4) containing 0.1 mol/L K2S2O8 and 0.1 mol/L KNO3 (PB-K2S2O8). The CdSe/ZnS* went back to the ground-state CdSe/ZnS to emit light at 590 nm or to transfer energy to proximal ground-state Cy5 molecules. The resultant excited-state Cy5 molecules relaxed to their ground state by emitting a light at 675 nm. The ECRET between QDs and Cy5 was used to evaluate interactions between DNAs and to measure conformational changes of DNAs and proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号