首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The concentrations of uranium and the234U/238U ratio in natural Syrian phosphates were measured by gamma- and alpha-ray spectroscopy. The234U/238U activity ratios showed that uranium in Syrian phosphate is in equilibrium under the climatic conditions. Soma anomalous observations in these ratios were explained by earlier leaching of the phosphate by water (rain or other).  相似文献   

2.
During this work selective separation of uranium from rock phosphate and columbite mineral was done before its quantitative estimation by using Inductively Coupled Plasma Optical Emission Spectrometery (ICP-OES). Uranium from the rock phosphate and columubite was extracted by sodium peroxide fusion followed by leaching in 2 M HNO3. To avoid spectral interference in the estimation of uranium by ICP-OES, the selective separation of uranium from the leachate was carried out by using two different extractants, 30% Tributyl Phophates (TBP) in CCl4 and a equi-volume mixture of Di(2-ethylhexyl) phosphoric acid (D2EHPA) & TBP in petrofin. Uranium was stripped from the organic phase by using 1 M ammonium carbonate solution. Determination of uranium by ICP-OES was done after dissolving the residue left after evaporation of ammonium carbonate solution in 4% HNO3. The concentration of the uranium observed in the rock phosphates samples was 40–200 μg g−1 whereas in columbite samples the concentration range was 100–600 μg g−1. Uranium concentration evaluated by ICP-OES was complimented by gamma & alpha spectrometry. Concentration of uranium evaluated by gamma spectrometry in case of rock phosphate and coulmbite was in close agreement with the uranium content obtained by ICP-OES. Uranium determination by alpha spectrometry showed only minor deviation (1–2%) from the results obtained by ICP-OES in case of rock phosphates whereas in case of coulmbites results are off by 20–30%.  相似文献   

3.
 Traces of uranium and thorium in barium(II), strontium(II) titanate ((Ba, Sr)TiO3) ferroelectric materials were determined by inductively coupled plasma mass spectrometry (ICP-MS). Samples were completely dissolved by a mixture of 1.4% H2O2 and 1.0 mol⋅l-1 HNO3. For a complete separation of the analytes from the matrix elements, a two step separation technique involving leaching and anion-exchange was applied. By the leaching step with HNO3 more than 90% of the matrix can be removed whereas the analytes completely remained in the solution. The anion-exchange step was carried out on a BIO⋅RAD AG1-X8 column with a mixture of 1.0 mol⋅l-1 HF and 0.5 mol⋅l-1 HNO3 as eluent. The content of uranium and thorium was subsequently measured by ICP-MS. The detection limits (D.L.) obtained were 0.043 ng g-1 and 0.035 ng g-1 for U and Th, respectively. The reproducibility was satisfactory with a relative standard deviation of less than 3% (at the 1 ng g-1 level, n=5). The matrix concentrations in the final solution were reduced to the sub-μg ml-1 level which is in the range of the detection limits of USN-ICP-AES (ultrasonic nebulization-ICP-atomic emission spectroscopy). The method was successfully applied to the determination of uranium and thorium in three synthetic (Ba, Sr)TiO3 samples spiked with the analytes at levels of 1, 5 and 10 ng g-1 and three (Ba, Sr)TiO3 ferroelectric samples containing sub-ng g-1 levels of the analytes. Received: 26 February 1996/Revised: 28 May 1996/Accepted: 5 June 1996  相似文献   

4.
 Traces of uranium and thorium in barium(II), strontium(II) titanate ((Ba, Sr)TiO3) ferroelectric materials were determined by inductively coupled plasma mass spectrometry (ICP-MS). Samples were completely dissolved by a mixture of 1.4% H2O2 and 1.0 mol⋅l-1 HNO3. For a complete separation of the analytes from the matrix elements, a two step separation technique involving leaching and anion-exchange was applied. By the leaching step with HNO3 more than 90% of the matrix can be removed whereas the analytes completely remained in the solution. The anion-exchange step was carried out on a BIO⋅RAD AG1-X8 column with a mixture of 1.0 mol⋅l-1 HF and 0.5 mol⋅l-1 HNO3 as eluent. The content of uranium and thorium was subsequently measured by ICP-MS. The detection limits (D.L.) obtained were 0.043 ng g-1 and 0.035 ng g-1 for U and Th, respectively. The reproducibility was satisfactory with a relative standard deviation of less than 3% (at the 1 ng g-1 level, n=5). The matrix concentrations in the final solution were reduced to the sub-μg ml-1 level which is in the range of the detection limits of USN-ICP-AES (ultrasonic nebulization-ICP-atomic emission spectroscopy). The method was successfully applied to the determination of uranium and thorium in three synthetic (Ba, Sr)TiO3 samples spiked with the analytes at levels of 1, 5 and 10 ng g-1 and three (Ba, Sr)TiO3 ferroelectric samples containing sub-ng g-1 levels of the analytes. Received: 26 February 1996/Revised: 28 May 1996/Accepted: 5 June 1996  相似文献   

5.
Batch and dynamic extractions of uranium(VI) in 10−3–10−2M concentrations in 3–4M nitric acid medium have been investigated using a commercially available phosphinic acid resin (Tulsion CH-96). The extraction of uranium(VI) has been studied as a function of time, batch factor (V/m), concentrations of nitric acid and uranium(VI) ion. Dual extraction mechanism unique to phosphinic acid resin has been established for the extraction of uranium(VI). Distribution coefficient (K d ) of uranium(VI) initially decreases with increasing concentration of nitric acid, reaches a minimum value at 1.3M, followed by increases in K d . A maximum K d value of ∼2000 ml/g was obtained at 5.0M nitric acid. Batch extraction data has been fitted into the linearized Langmuir adsorption isotherm. The performance of the resin under dynamic extraction conditions was assessed by following the breakthrough behavior of the system. Effect of flow rate, concentrations of nitric acid and uranium ion in the feed on the breakthrough behavior of the system was studied and the data was fitted using Thomas model.  相似文献   

6.
The adsorption behaviour of thorium, protactinium, uranium, neptonium and plutonium on zirconium phosphate from nitric acid and ammonium nitrate solutions was investigated. Partition data from the mentioned media together with that from chloride solutions were used to calculate formation constants for the concerned elements in the range of Cl and NO 3 activities <1M. Obtained β values were compared with those reported in the literature and indicated reasonable agreement.  相似文献   

7.
A series of leaching experiments with HF, HCl, HNO3 were carried out on samples of uranium minerals (uraninite and carnotite samples). Anomalously high234U/238U ratios were observed in some uranium fractions. The observed234U/238U activity ratios varied between the values of 1.019±0.155 and 6.210±0.504 (Ci/Ci), while the bulk carnotite sample had an activity ratio of 1.010±0.005 (Ci/Ci). These results are interpreted as due to alpha-recoil effect and changes in oxidation state of uranium.  相似文献   

8.
An extraction and spectrophotometric method for determination of trace amounts of uranium in phosphate fertilizers is described. It is based on the extraction of uranium with trioctylphosphine oxide in benzene and the spectrophotometric determination of uranium with Arsenazo III in buffer-alcoholic medium. The maximum absorbance occurs at 655 nm with a molar absorptivity of 1.2·104 l·mol–1·cm–1. Beer's law is obeyed over the range 0.6–15.0 g·ml–1 of uranium(VI). The proposed method has been applied successfully to the analysis of phosphate fertilizers with phosphate concentrations of 45% P2O5.  相似文献   

9.
利用化学种态分析软件CHEMSPEC计算了低浓缩铀靶辐照后溶液中铀(U)的化学种态分布及其主要裂变元素对U化学种态的影响。结果表明,在单组分体系中,pH值和铀酰浓度都会显著影响U的化学种态分布。随着铀酰浓度的增大,溶液中将会生成多核配合物;在较高的NO3-浓度下,U在溶液中主要以UO22+和UO2NO3+的形式存在。CO2对不同浓度铀的种态分布影响结果表明,当铀酰浓度较低时,铀的化学种态多以碳酸铀酰的形式存在;当铀酰浓度较高时,铀的化学种态多以氢氧铀酰或柱铀矿沉淀的形式存在。计算发现,当裂片元素Tc、I、Mo的浓度小于0.01 mol·L-1并分别以TcO4-、I-、MoO42-的种态存在时,这些裂片元素不改变铀的各化学种态的分布。  相似文献   

10.
利用化学种态分析软件CHEMSPEC计算了低浓缩铀靶辐照后溶液中铀(U)的化学种态分布及其主要裂变元素对U化学种态的影响。结果表明,在单组分体系中,pH值和铀酰浓度都会显著影响U的化学种态分布。随着铀酰浓度的增大,溶液中将会生成多核配合物;在较高的NO3-浓度下,U在溶液中主要以UO22+和UO2NO3+的形式存在。CO2对不同浓度铀的种态分布影响结果表明,当铀酰浓度较低时,铀的化学种态多以碳酸铀酰的形式存在;当铀酰浓度较高时,铀的化学种态多以氢氧铀酰或柱铀矿沉淀的形式存在。计算发现,当裂片元素Tc、I、Mo的浓度小于0.01mol·L-1并分别以TcO4-、I-、MoO42-的种态存在时,这些裂片元素不改变铀的各化学种态的分布。  相似文献   

11.
A method for the exact determination of uranium in liquid and solid samples containing various main elements with Z≤29 is described. The method is based on simultaneous measurements of the excited LX fluorescent energies of uranium and the backscattered energies of the iodine target used for excitation. ULα/ULγ and (ULυ/IKαincoh)/U% peak intensities were found to be linearly dependent in samples of different chemical composition. Twenty eight liquid and solid samples of various matrices containing uranium in the range 0.3–30% were determined and a calibration line based on these measurements was obtained. Several samples containing different U concentrations were checked by this method and the average deviation of the calculated results from the known content is ±12.5%. The X-rays were excited using a 10 mCi241Am/I source-target assembly and measured with 25 mm2 Si(Li) detector.  相似文献   

12.
This work proposes a new procedure for on-line electro-oxidative leaching and spectrophotometric determination of uranium in ore samples. By associating a conventional flow injection system, used for uranium determination with Arsenazo III, with an on-line system for electro-oxidative leaching, a fully integrated system was assembled. The systems were integrated after achieving optimum conditions for uranium determination and leaching. According to the results obtained in the present work, a current density of 280 mA cm−2 generated enough hypochlorite ions in the electrolyte solution (3.6 mol L−1 HCl + 2% (w/v) NaCl) to promote quantitative oxidation of U(IV) to U(VI) thus improving the extraction efficiency. The slurry density did not significantly affect the performance of the system and the increasing temperature resulted in a decrease in extraction efficiency. This methodology was applied in the determination of U3O8 in four ore samples and the results obtained agreed with those obtained by ICP-MS after conventional wet acid digestion of the samples.  相似文献   

13.
In an effort to develop new chelating agents for the decorporation of uranium and other actinides, the interaction of the clinically used 1,2-dimethyl-3-hydroxypyrid-4-one (Deferiprone or L1) with hexavalent uranium was investigated by using UV-VIS spectroscopy and solubility measurements. The complex stoichiometry estimation carried out by the Job plot method indicated that under normal conditions up to pH 8.0 a 1[U(VI)]∶1[L1] complex is formed. The stability constant of the UO2L1+ complex was determined by spectroscopic and solubility experiments and found to be log β11=9.1±0.3. The molar extinction coefficient at pH 7.6 for the complex at 500 nm was estimated to be 650 l·mol−1·cm−1. At ligand concentrations higher than 6·10−4 mol·l−1 the formation of a precipitate was observed. The stoichiometry UO2(L1)2 was identified following FTIR measurements of the red precipitate and UV/VIS spectroscopy after dissolution.  相似文献   

14.
A simple, sensitive and efficient spectrophotometric method is proposed for rapid determination of uranium using arsenazo-III in perchloric acid. The reaction between arsenazo-III and U(VI) was instantaneous in 3 mol L−1 HClO4. N-cetyl-N,N,N-trimethylammonium bromide was used for increasing the sensitivity and selectivity of the complex. The absorbance remains stable for over 48 h in the presence of surfactant. The method allows the determination of uranium in the range of 1–20 μg g−1 with a molar absorptivity of 3.9 × 105 dm3 mol−1 cm−1 at 681 nm. Sandell’s sensitivity of the complex was calculated to be 6.4 ng cm−2 at λmax 681 nm. A significant enhancement was achieved in the sensitivity of the proposed method whereas, Relative Standard Deviation was reduced from 4.5 to 1.7% in the presence of surfactant. Among various diverse ions studied, fluoride, cyanide, citrate, sulfate and phosphate interfere beyond the tolerance limit. Among cations only Cr3+ and Co2+ decreased the normal absorbance. The validity of the reported method was tested by determining uranium in the environmental water samples and Standard Reference Material. The results agreed closely with the reported values. The proposed method is new, easy in operation and better in sensitivity than many of the existing methods.  相似文献   

15.
Phosphate deposits are generally characterized by high levels of natural radionuclide concentrations. Natural radionuclides from the uranium and thorium series were measured, using high-resolution gamma-spectrometry in phosphate rock and phosphogypsum samples from the phosphate fertilizer industry in India. Equilibrium was found to be disrupted during the chemical processing of phosphate rock with 83 % of the 226Ra and only 5 % of 238U fractionating to phosphogypsum. Activity concentrations of 238U and 226Ra in phosphogypsum produced from various fertilizer industries of India showed levels < 1,000 Bq kg?1 and pose no restriction for use in building/construction material.  相似文献   

16.
A feasibility and basic study to find a possibility to develop such a process for recovering U alone from spent fuel by using the methods of an oxidative leaching and a precipitation of U in high alkaline carbonate media was newly suggested with the characteristics of a highly enhanced proliferation-resistance and more environmental friendliness. This study has focused on the examination of an oxidative leaching of uranium from SIMFUEL powders contained 16 elements (U, Ce, Gd, La, Nd, Pr, Sm, Eu, Y, Mo, Pd, Ru, Zr, Ba, Sr, and Te) using a Na2CO3 solution with hydrogen peroxide. U3O8 was dissolved more rapidly than UO2 in a carbonate solution. However, in the presence of H2O2, we can find out that the leaching rates of the reduced SIMFUEL powder are faster than the oxidized SIMFUEL powder. In carbonate solutions with hydrogen peroxide, uranium oxides were dissolved in the form of uranyl peroxo-carbonato complexes. UO2(O2) x (CO3) y 2−2x−2y , where x/y has 1/2, 2/1.  相似文献   

17.
For the disposal of a high efficiency particulate air (HEPA) glass filter into the environment, the glass fiber should be leached to lower its radioactive concentration to the clearance level. To derive an optimum method for the removal of uranium series from a HEPA glass fiber, five methods were applied in this study. That is, chemical leaching by a 4.0?M HNO3?C0.1?M Ce(IV) solution, chemical leaching by a 5 wt% NaOH solution, chemical leaching by a 0.5?M H2O2?C1.0?M Na2CO3 solution, chemical consecutive chemical leaching by a 4.0?M HNO3 solution, and repeated chemical leaching by a 4.0?M HNO3 solution were used to remove the uranium series. The residual radioactivity concentrations of 238U, 235U, 226Ra, and 234Th in glass after leaching for 5?h by the 4.0?M HNO3?C0.1?M Ce(IV) solution were 2.1, 0.3, 1.1, and 1.2?Bq/g. The residual radioactivity concentrations of 238U, 235U, 226Ra, and 234Th in glass after leaching for 36?h by 4.0?M HNO3?C0.1?M Ce(IV) solution were 76.9, 3.4, 63.7, and 71.9?Bq/g. The residual radioactivity concentrations of 238U, 235U, 226Ra, and 234Th in glass after leaching for 8?h by a 0.5?M H2O2?C1.0?M Na2CO3 solution were 8.9, 0.0, 1.91, and 6.4?Bq/g. The residual radioactivity concentrations of 238U, 235U, 226Ra, and 234Th in glass after consecutive leaching for 8?h by the 4.0?M HNO3 solution were 2.08, 0.12, 1.55, and 2.0?Bq/g. The residual radioactivity concentrations of 238U, 235U, 226Ra, and 234Th in glass after three repetitions of leaching for 3?h by the 4.0?M HNO3 solution were 0.02, 0.02, 0.29, and 0.26?Bq/g. Meanwhile, the removal efficiencies of 238U, 235U, 226Ra, and 234Th from the waste solution after its precipitation?Cfiltration treatment with NaOH and alum for reuse of the 4.0?M HNO3 waste solution were 100, 100, 93.3, and 100%.  相似文献   

18.
The possibility of using di-(2-ethylhexyl)-phosphoric acid (HDEHP) in solvent extraction for the separation of neptunium, plutonium, americium and curium from large amounts of uranium was studied. Neptunium, plutonium, americium and curium (as well as uranium) were extracted from HNO3, whereafter americium and curium were back-extracted with 5M HNO3. Thereafter was neptunium back-extracted in 1M HNO3 containing hydroxylamine hydronitrate. Finally, plutonium was back-extracted in 3M HCl containing Ti(III). The method separates238Pu from241Am for α-spectroscopy. For ICP-MS analysis, the interferences from238U are eliminated: tailing from238U, for analysis of237Np, and the interference of238UH+ for analysis of239Pu. The method has been used for the analysis of actinides in samples from a spent nuclear fuel leaching and radionuclide transport experiment.  相似文献   

19.
During this work the determination of uranium in the range of μg·L−1 to tens of μg·L−1 was done by alpha-spectrometry after electroplating the aliquots of water sample using (NH4)2SO4 as an electrolyte. In general, the determination of uranium by alpha-spectrometry needs its separation from other transuranics specially thorium. The process described here does not involve any sample digestion and radiochemical separation of uranium from other transuranics. In this method an aliquot (1 to 3 mL) of the sample was dried and dissolve in (NH4)2SO4 and thereafter the sample was electroplated on a stainless steel (SS) planchet by using an electrochemical cell of special design. The proposed techniques have a distinct advantage over the determination of uranium by adsorptive stripping voltammetry (AdSV) in which uranium-chloranilic (2,5-dichloro-3,6-dihydroxy-1,4-benzoquinone) acid complex was used for concentrating the uranium from the solution. Since in the case of AdSv, the determination of uranium was not possible for samples having dissolved organic carbon (DOC) more than 15 mg·L−1 and Cl concentration is in the range of 40,000 μ·g−1. In the case of spike experiments with 232U the recovery was observed in the range of 90–95% in aqueous medium having higher concentration of Cl and DOC as indicated above.  相似文献   

20.
The present paper deals with the study on uranium (VI) leaching, as uranyl ions, from ores with a poor content in util minerals, using some algae as: Porphyridium cruentum (Smith and Soerly) Nägeli, Spirulina platensis CNM-CB-02 and Nostoc linkia (Roth) Born and Flah. The basic composition of these ores allowed the self-maintenance and self-development of these microorganisms, which have facilitated then the leaching of the uranium (VI) as UO2 2+ ions. The microbial leaching degree was comprised between 40–90%, depending on the used alga and experimental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号