首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mouse liver fructose 6-phosphate, 2-kinase was purified by ultracentrifugation, polyethylene glycol precipitation, and subsequently by chromatography on DEAE-Sephadex, Blue-Sepharose and phasphocellulose columnS. Gel filtration and SDS polyacrylamide electrophorcsis showed that the enzyme has a molecular weight of 110,000 with two identical subunits. Mg~(2+) is essential for its activity. The activation of the enzyme by Mg~(2+) showed a positive cooperativity. The substrate saturation curve for fructose 6-phosphate was sigmoidal and for ATP was hyperbolic. The K_m's for ATP increased with decrease in concentrations of fructose 6-phosphate indicating that the sequence for the substrates binding was in an ordered mechanism with respect to fructose 6-phosphate prior to ATP. An ionizable residue at the active site with pKa 9.5 was essential for the ATP binding and the pKa shifted to 9.8 after the binding of ATP.  相似文献   

2.
Acetate kinase (EC 2.7.2.1) is involved in the wasteful production of acetate during conversion of cellulose to ethanol byClostridium thermocellum. The properties of this enzyme activity inC. thermocellum cell extracts were determined. Optimum enzyme activity was at 60 degrees C and between pH 7.5 and 9.0. In the presence of air, acetate kinase was stable to temperatures up to 60 degrees C, retaining 90% activity after 2 h, and was inactivated rapidly at higher temperatures. The enzyme exhibited a wide range of stability to pH (5.0-9.0) when incubated at 50 degrees C for 2 h. As with other acetate kinases, a divalent cation, such as Mg(2+), was required for enzyme activity. Optimum activity was observed at 20mM MgCl(2) when ATP was held constant at 10 mM. Acetate kinase activity was adversely affected by KCl, a salt commonly used in ion-exchange or affinity chromatography, with 0.3M KCl inhibiting by 50%. These results will be important in optimizing the direct microbial conversion process of cellulose to ethanol usingC. thermocellum in coculture withClostridium thermosaccharolyticum.  相似文献   

3.
Acetate kinase (EC 2.7.2.1), an enzyme involved in the wasteful production of acetate during conversion of cellulose to ethanol by Clostridium thermocellum, was purified 144-fold. The enzyme has an Mr of 84 kD by non-denaturing gradient gel electrophoresis, and an Mr of 46 kD when estimated with a denaturing gel; thus it appears to be a homodimer. Optimum enzyme activity occurs at 50°C and between pH 7.2 and 8.0. Acetate kinase is stable to temperatures up to 60°C, but is completely inactivated at 80°C after two h. The enzyme is stable between pH 7.0 and 9.0 when incubated at 50°C for two h. Optimum acetate kinase activity occurs at a MgCl2:ATP ratio of 2:1, which indicates an interaction between Mg2+ and ATP and that between Mg2+ and acetate kinase. Enzyme activity is partially inhibited by KCl, an inorganic salt frequently used in chromatography and fermentation media, losing 60% activity in the presence of 0.2 M KCl. Sigmoidal enzyme kinetics were observed from the velocity plot of acetate kinase when either the acetate (S0.5 = 285 mM) or ATP (S0.5 = 11 mM) concentration was varied, suggesting cooperative binding of the two substrates.  相似文献   

4.
The methionine aminopeptidase (MetAP) catalyzes the removal of amino terminal methionine from newly synthesized polypeptide. MetAP from Mycobacterium smegmatis mc(2) 155 was purified from the culture lysate in four sequential steps to obtain a final purification fold of 22. The purified enzyme exhibited a molecular weight of approximately 37 kDa on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Activity staining was performed to detect the methionine aminopeptidase activity on native polyacrylamide gel. The enzyme was characterized biochemically, using L-methionine p-nitroanilide as substrate. The enzyme was found to have a temperature and pH optimum of 50 degrees C and 8.5, respectively, and was found to be stable at 50 degrees C with half-life more than 8 h. The enzyme activity was enhanced by Mg(2+) and Co(2+) and was inhibited by Fe(2+) and Cu(2+). The enzyme activity inhibited by EDTA is restored in presence of Mg(2+) suggesting the possible role of Mg(2+) as metal cofactor of the enzyme in vitro.  相似文献   

5.
Bilirubin oxidase was purified from a culture filtrate of Myrothecium verrucaria Mv 2, 1089 by DEAE-cellulose and Sephadex G-100 column chromatographies. The purified enzyme had a specific activity of 30 U/mg protein and showed a single band on polyacrylamide gel electrophoresis. Some of the general properties of this bilirubin oxidase were as follows: the optimum pH for the enzyme reaction was 7.5 and the optimum temperature was 50 degrees C. The enzyme was stable at pH ranging from 9.0 to 9.5. The mol wt was calculated to be 61,900-62,700 by SDS-PAGE and gel-filtration technique. The apparent Km value of the bilirubin oxidase was calculated to be 9.4 x 10(-5) mol/L. The enzyme activity was greatly reduced by incubation of bilirubin oxidase with Fe2+, Hg+, NaN3, NH+4, and Zn2+. The enzyme reaction was inhibited in the presence of Ca2+, Hg+, Zn2+, Fe2+, and BSA.  相似文献   

6.
Analysis of peroxidase activity by native polyacrylamide gel electrophoresis (PAGE) from a garlic bulb (Allium sativum L) extract showed two major activities (designated POX1 and POX2). The POX2 isoenzyme was purified to homogeneity by ammonium sulfate precipitation, gel filtration, and cation-exchange chromatography. The purified enzyme was found to be monomeric with a molecular mass of 36.5 kDa, as determined by sodium dodecyl sulfate-PAGE. The optimum temperature ranged from 25 to 40 degrees C and optimum pH was about 5.0. The apparent Km values for guaiacol and H2O2 were 9.5 and 2 mM, respectively. POX2 appeared highly stable since 50% of its activity was conserved at 50 degrees C for 5 h. Moreover POX2 was stable over a pH range of 3.5-11.0. Immobilization of POX2 was achieved by covalent binding of the enzyme to an epoxy-Sepharose matrix. The immobilized enzyme showed great stability toward heat and storage when compared with soluble enzyme. These properties permit the use of this enzyme as a biosensor to detect H2O2 in some food components such as milk or its derivatives.  相似文献   

7.
Dioscin-alpha-L-rhamnosidase was isolated, purified and partially characterized from pig liver. The maximum activity was reached at pH 7, 42 degrees C, 24 h, and 2% of substrate concentration. Fe3+ and Cu2+ inhibited the enzyme; the ion Ca2+ activated it. Mg2+ was an inhibitor at 100 mM, but it was an activator at 200 mM. Zn2+ could be a weak activator of the enzyme. The molecular weight of dioscin-alpha-L-rhamnosidase was about 47 kDa as determined by the method of SDS-polyacrylamide gel electrophoresis.  相似文献   

8.
A magnetic immobilized lactase has been prepared using magnetite as the magnetic material. Magnetite was functionalized by treatment with polyethyleneimine and crosslinked with glutaraldehyde. Lactase was then covalently coupled to the activated magnetic matrix via the aldehyde groups. The conditions for optimal immobilization of enzyme are described. Eighty percent of the lactase activity was lost on immobilization and is thought to be owing to the orientation of enzyme binding to the matrix. The amount of protein coupled was 80% of that applied. The maximum lactase activity retained on the matrix following immobilization was 360 U/g matrix. The immobilized lactase showed optimal activity at pH 4.5 and 65 degrees C. The immobilized lactase was more heat stable than the free enzyme, and retained 83% of its original activity after 14 d at 55 degrees C. Galactose competitively inhibited the immobilized lactase preparation (Ki 20 m/M). The presence of high initial concentrations of galactose (10% w/v) did not prevent total hydrolysis of lactose. Glucose and calcium ions were activators of the immobilized enzyme. The immobilized enzyme hydrolyzed high concentrations of lactose (up to 25% w/v) to completion within 4-6 h in a stirred batch reactor at 55 degrees C. There was no evidence of substrate inhibition at high substrate concentrations. The efficiency of hydrolysis of lactose by the immobilized lactase was better than that of the free enzyme. The magnetic immobilized lactase was demonstrated to be suitable for use in the enzymatic hydrolysis of both pure, and cheese whey permeate, lactose.  相似文献   

9.
5-Aminolevulinic acid (ALA) is a natural precursor of protoporphyrin IX (PpIX) and heme in cells. Photodynamic therapy (PDT) utilizes a metabolic imbalance in cancer cells, leading to increased PpIX generation from exogenous ALA. Due to chemical instability of ALA in therapeutic concentrations at pH values larger than 5.0 and at high temperatures, it looses its activity by spontaneous dimerization to 2,5-dicarboxyethyl-3,6-dihydropyrazine (DHPY). ALA esters are now supplementing ALA in PDT, but little is known about their stability. We have studied the stability of ALA and its methyl ester (MAL) stored under different conditions (temperatures, pH values) by measuring their ability to generate PpIX. 100mM solutions of both compounds were found to be stable at pH 4 and at 4 degrees C. However, at pH 5.5 they lost almost 10% of the initial activity during 5days of storage at 4 degrees C. The fastest decay of ALA and MAL was seen at pH 7.4 and at 37 degrees C, and followed first order kinetics. At pH 7.4 and at 4 degrees C MAL lost its PpIX producing ability more slowly than at 37 degrees C. Our work shows that solutions should be prepared immediately before use and stored at low temperatures. The pH of stock solutions should not exceed 5.  相似文献   

10.
Erythrocyte membranes prepared by three different procedures showed (Mg2+ + Ca2+)-ATPase activities differing in specific activity and in affinity for Ca2+. The (Mg2+ + Ca2+)-ATPase activity of the three preparations was stimulated to different extents by a Ca2+-dependent protein activator isolated from hemolysates. The Ca2+ affinity of the two most active preparations was decreased as the ATP concentration in the assay medium was increased. Lowering the ATP concentration from 2 mM to 2-200 microM or lowering the Mg:ATP ratio to less than one shifted the (Mg2+ + Ca2+)-ATPase activity in stepwise hemolysis membranes from mixed "high" and "low" affinity to a single high Ca2+ affinity. Membranes from which soluble proteins were extracted by EDTA (0.1 mM) in low ionic strength, or membranes prepared by the EDTA (1-10 mM) procedure, did not undergo the shift in the Ca2+ affinity with changes in ATP and MgCl2 concentrations. The EDTA-wash membranes were only weakly activated by the protein activator. It is suggested that the differences in properties of the (Mg2+ + Ca2+)-ATPase prepared by these three procedures reflect differences determined in part by the degree of association of the membrane with a soluble protein activator and changes in the state of the enzyme to a less activatable form.  相似文献   

11.
The immobilization of horseradish peroxidase (HRP) on composite membrane has been investigated. This membrane was prepared by coating nonwoven polyester fabric with chitosan glutamate in the presence of glutraldehyde as a crosslinking agent. The physico-chemical properties of soluble and immobilized HRP were evaluated. The soluble HRP lost 90% of its activity after 4 weeks of storage at 4°C, whereas the immobilized enzyme retained 85% of its original activity at the same time. A reusability study of immobilized HRP showed that the enzyme retained 54% of its activity after 10 cycles of reuse. Soluble and immobilized HRP showed the same pH optima at pH 5.5. The immobilized enzyme had significant stability at different pH values, where it had maximum stability at pH 3.0 and 6.0. The kinetic properties indicated that the immobilized enzyme had more affinity toward substrates than soluble enzyme. The soluble and immobilized enzymes had temperature optima at 30 and 40°C and were stable up to 40 and 50°C, respectively. The stability of HRP against metal ion inactivation was improved after immobilization. Immobilized HRP exhibited high resistance to proteolysis by trypsin. The immobilized HRP was more resistant to inactivation induced by urea, Triton X-100, and organic solvents compared to its soluble counterpart. The immobilized HRP showed very high yield of immobilization and markedly high stabilization against several forms of denaturants that offer potential for several applications.  相似文献   

12.
A new extracellular ribonuclease (RNase) from a mutant of Aspergillus niger, named A. niger SA-13-20 RNase, was purified to homogeneity by (NH4)2SO4 fractionation (50-85%), DEAE-cellulose anion-exchange chromatography, ultrafiltration and Sephacryl HR-200 chromatography. The enzyme was purified up to 54.4-fold with a final yield of 24.5%. There were differences in the molecular weight, pI value and some physico-chemical properties between A. niger SA-13-20 RNase and that from the parent strain. The enzyme is monomeric and its molecular weight and isoelectric point were 40.1 kDa and 5.3, respectively. The N-terminal amino acid sequence of A. niger SA-13-20 RNase was TIDTYSSDSP. The optimum pH, temperature and buffer concentration for the enzymatic reaction were 3.5, 65 degrees C, and 0.175 M, respectively. Metal ions, such as K+, NH4+, Mg2+, and Ca2+ at the concentration of 1.0 mM had a slight activation effect on the enzyme activity and (NH4)2SO4 activated the enzyme significantly. The enzyme was stable at pH lower than 8.5 and was easy to inactivate in strong alkali solution.  相似文献   

13.
A cyclomaltodextrin glucanotransferase (E.C. 2.4.1.19) from a newly isolated alkalophilic and moderately thermophilic Paenibacillus campinasensis strain H69-3 was purified as a homogeneous protein from culture supernatant. Cyclomaltodextrin glucanotransferase was produced during submerged fermentation at 45 degrees C and purified by gel filtration on Sephadex G50 ion exchange using a Q-Sepharose column and ion exchange using a Mono-Q column. The molecular weight of the purified enzyme was 70 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and the pI was 5.3. The optimum pH for enzyme activity was 6.5, and it was stable in the pH range 6.0-11.5. The optimum temperature was 65 degrees C at pH 6.5, and it was thermally stable up to 60 degrees C without substrate during 1 h in the presence of 10 mM CaCl(2). The enzyme activity increased in the presence of Co(2+), Ba(2+), and Mn(2+). Using maltodextrin as substrate, the K(m) and K(cat) were 1.65 mg/mL and 347.9 micromol/mg x min, respectively.  相似文献   

14.
A new lipase from seeds of Pachira aquatica was purified to homogeneity by SDS-PAGE obtaining an enzyme with a molecular weight of approximately 55 kDa. The purified lipase exhibited maximum activity at 40 degrees C and pH 8.0, for an incubation time of 90 min. Concerning temperature stability, at the range from 4 to 50 degrees C, it retained approximately 47% of its original activity for 3 h. The enzyme activity increased in the presence of Ca(++) and Mg(++), but was inhibited by Hg(++), Mn(++), Zn(++), Al(+++) and various oxidizing and reducing agents. The lipase was highly stable in the presence of organic solvents, and its activity was stimulated by methanol. The values of K(m) and V(max) were 1.65 mM and 37.3 micromol mL(-1) min(-1), respectively, using p-nitrophenylacetate as substrate. The enzyme showed preference for esters of long-chain fatty acids, but demonstrated significant activity against a wide range of substrates.  相似文献   

15.
An alkaline protease producer haloalkaliphilic bacteria (isolate Vel) was isolated from west coast of India. It was related to Bacillus pseudofirmus on the basis of 16S r RNA gene sequencing, lipid profile and other biochemical properties. The protease secreted by this bacteria was purified 10-fold with 82% yield by a single step method on Phenyl Sepharose 6 Fast Flow column. The apparent molecular mass based on the sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) was estimated to be 29 000 Da. The Km and Vmax towards caseinolytic activity were found to be 2 mg ml(-1) and 289.8 microg min(-1), respectively. The enzyme was active over the pH range of 8.5-12.0, the optimum being 10-11.0. The purified enzyme when kept at 45 degrees C and 50 degrees C for 40 min retained 92% and 85% protease activity, respectively. Effect of NaCl concentration on protease activity showed that the enzyme was slightly inhibited with high concentration of salt. The proteolytic activity was inhibited by PMSF, suggesting that the enzyme may belong to serine type protease. Interestingly, the activity was slightly enhanced with SDS (0.1%) and Triton X-100 (0.1%) but remained unaffected by Tween 80 (0.1%). The activity was affected by metal ions to varying extent. While Mn2+, Zn2+ and Mg2+ had no significant effect on protease activity, the enzyme was activated with Ca2+ (1 mM) and Cu2+ (5 mM). The stability of the enzyme in the presence of detergent components and surfactants is particularly attractive for its application in detergent industries.  相似文献   

16.
通过控制反应体系的pH值,探究了阳离子、兼性和阴离子形态的氧氟沙星(OFL,3种形态分别记为OFL~+,OFL~±和OFL~-)在凹凸棒土(ATP)上的吸附特征.实验结果表明,OFL~+主要通过与ATP表面的Ca~(2+),Mg~(2+)进行阳离子交换吸附于ATP上,当其吸附量较高时,会存在少量的氢键;OFL~±和OFL~-可与ATP表面的铁氧化物、铝氧化物进行表面络合,也可与溶液中从ATP中溶解出的Ca~(2+)和Mg~(2+)形成络合物,再通过静电作用吸附于ATP上.在中性至微碱性(pH=7.10~7.70)条件下,由于Ca的电负性小于Mg,[Ca~(2+)-OFL]+不能稳定地存在于溶液中,使得OFL±与Ca~(2+)进行阳离子交换而与Mg~(2+)形成络合物,再通过静电作用吸附于ATP上.当OFL主要以OFL~-形态存在于溶液中时(p H=9.00~10.00),Ca~(2+)和Mg~(2+)均可与OFL~-形成络合物,再通过静电作用吸附于ATP上.  相似文献   

17.
A gene of α‐L ‐arabinofuranosidase (Abf) from Trichoderma koningii G‐39 was successfully expressed in Pichia pastoris. The recombinant enzyme was purified to > 90% homogeneity by a cation‐exchanged chromatography. The purified enzyme exhibits both α‐L ‐arabinofuranosidase and β‐D ‐xylosidase (Xyl) activities with p‐nitrophenyl‐α‐L ‐arabionfuranoside (pNPAF) and 2,4‐dinitrophenyl‐β‐D ‐xylopyanoside (2,4‐DNPX) as substrate, respectively. The stability and the catalytic feature of the bifunctional enzyme were characterized. The enzyme was stable for at least 2 h at pH values between 2 and 8.3 at room temperature when assayed for Abf and Xyl activities. Enzyme activity decreased dramatically when the pH exceeded 9.5 or dropped below 1.5. The enzyme lost 35% of Abf activity after incubation at 55 °C for 2 h, but retained 95% of Xyl activity, with 2,4‐DNXP as substrate, under the same conditions. Further investigation of the active site topology of both enzymatic functions was performed with the inhibition study of enzyme activities. The results revealed that methyl‐α‐L ‐arabinofuranoside inhibition is noncompetitive towards 2,4‐DNPX as substrate but competitive towards pNPAF. Based on the thermal stability and the inhibition studies, we suggest that the enzymatic reactions of Abf and Xyl are performed at distinct catalytic sites. The recombinant enzyme possesses both the retaining transarabinofuranosyl and transxylopyranosyl activities, indicating both enzymatic reactions proceed through a two‐step, double displacement mechanism.  相似文献   

18.
The objective of this study was to covalently immobilize Candida antarctica type B lipase (CALB) onto silanized green coconut fibers. Variables known to control the number of bonds between enzyme and support were evaluated including contact time, pH, and final reduction with sodium borohydride. Optimal conditions for lipase immobilization were found to be 2 h incubation at both pH 7.0 and 10.0. Thermal stability studies at 60 degrees C showed that the immobilized lipase prepared at pH 10.0 (CALB-10) was 363-fold more stable than the soluble enzyme and 5.4-fold more stable than the biocatalyst prepared at pH 7.0 (CALB-7). CALB-7 was found to have higher specific activity and better stability when stored at 5 degrees C. When sodium borohydride was used as reducing agent on CALB-10 there were no improvement in storage stability and at 60 degrees C stability was reduced for both CALB-7 and CALB-10.  相似文献   

19.
A lactate oxidase was purified about 36-fold from a newly screened strain KY6 of gram negative bacterium from soil to yield a homogeneous protein. The native enzyme had a molecular mass of 204 kDa measured by Sephadex G-200 and that of subunit on the SDS-PAGE was found to be 45 kDa. The enzyme was optimally active at pH 7.7 and showed stability at pH range of 5.7 to 9.5 for 24 h at 4?C. The optimum temperature was 70?C and the enzyme activity was stable for 10 min up to 45?C. The half-life of the enzyme activity was about 10 min at 55?C. The best substrate of the enzyme was D-lactate and Km value for D-lactate was 0.14 mM. The Km value for DL-lactate was 0.20 mM. Substrate inhibition of the enzyme was observed at higher concentrations than 20 mM of DL-lactate and 10 mM of D-lactate.  相似文献   

20.
The efficiency of xylanase of Bacillus brevis BISR-062 as a prebleaching agent was evaluated on three nonwoody pulps at two different pH values (7.0 and 8.5). Crude xylanase was found to have an optimum temperature and pH of 65-70 degrees C and 7.0, respectively. The stability of the enzyme was determined at two pH values (7.0 and 8.0), and it lost approx 50% of its activity at both values within 2 h at 50 degrees C. However, the enzyme was found to be effective as a prebleaching agent only with rice straw pulp. A maximum brightness gain of 6 points was obtained with this pulp at pH 7.0. The strength properties of the rice straw pulp at pH 7.0 also improved as the result of enzyme treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号