首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Nomenclature  τ  wallshearstressγshearrateτy yieldstressηc Cassonviscosityktheconsistencyindexnnon_Newtonianindexτp shearstressofthepthelementωangularvelocityRvessel’sradiusCwavespeedM  magneticparameter (Hartmannnumber)u,w velocitycomponentinther_andz_directions,respectivelyP  pressureα  unsteadinessparameter k , R meanparametersTp relaxationtimeofthepthelementρ densityIntroductionTheimportancetoatherogenesisofarterialflowphenomenasuchasflowseparation ,recirculationands…  相似文献   

2.
A viscoelastic plastic model for suspension of small particles in polymer melts has been developed. In this model, the total stress is assumed to be the sum of stress in the polymer matrix and the filler network. A nonlinear viscoelastic model along with a yield criterion were used to represent the stresses in the polymer matrix and the filler network, respectively. The yield function is defined in terms of differential equations with an internal parameter. The internal parameter models the evolution of structure changes during floc rupture and restoration. The theoretical results were obtained for steady and oscillatory shear flow and compared with experimental data for particle filled thermoplastic melt. The experimental data included the steady state shear strress over a wide range of shear rates, the transient stress in a start up shear flow, stress relaxation after cessation of a steady state shear flow, the step shear and the oscillatory shear flow at various amplitudes.  相似文献   

3.
Large eddy simulation of planar shear flow past a square cylinder has been investigated. Dynamic Smagorinsky model has been used to model subgrid scale stress. The shear parameter, K, namely the nondimensional streamwise velocity gradient in the lateral direction, is 0.0, 0.1 and 0.2. Reynolds number based on the centerline velocity is fixed at Re=21400. The time and span‐averaged velocity components, pressure coefficient, Reynolds stresses for uniform are in good agreement with the literature. In shear flow the calculated flow structure and mean velocity components are shown to be markedly different from those of the uniform flow. With increasing shear parameter, the cylinder wake is dominated by clockwise vortices. Both the velocity components in shear flow are compared with respective components in uniform flow. Comparison of normal and shear stresses between shear and no shear case have also been presented. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
Blood flow through a catheterized artery is analyzed, assuming the flow is steady and blood is treated as a two-fluid model with the suspension of all the erythrocytes in the core region as a Casson fluid and the plasma in the peripheral region as a Newtonian fluid. The expressions for velocity, flow rate, wall shear stress and frictional resistance are obtained. The variations of these flow quantities with yield stress, catheter radius ratio and peripheral layer thickness are discussed. It is noticed that the velocity and flow rate decrease while the wall shear stress and resistance to flow increase when the yield stress or the catheter radius ratio increases while all the other parameters were held fixed. It is found that the velocity and flow rate increase while the wall shear stress and frictional resistance decrease with the increase of the peripheral layer thickness. The estimates of the increase in the frictional resistance are significantly very small for the present two-fluid model than those of the single-fluid Casson model.  相似文献   

5.
非均匀颗粒材料的类固-液相变行为及本构方程   总被引:2,自引:0,他引:2  
季顺迎 《力学学报》2007,39(2):223-237
以非均匀颗粒介质为研究对象,采用三维离散元方法对其在不同密集度和剪切速率下的动 力过程进行了数值模拟,分析了其在由瞬时接触的快速流动向持续接触的准静态流动的转变 过程及其行为特点. 通过对不同材料性质下相变过渡区内颗粒材料的宏观应力、接触时间数、 配位数、团聚颗粒数量、有效摩擦系数等参量的计算,更加全面地描述了非均匀颗粒材料在 类固-液相变过程中的基本特征. 基于以上数值计算结果,建立了一个适用于颗粒材料 类固态、类液态以及其相变过程的本构方程,并通过剪切室实验结果验证了它的合理性.  相似文献   

6.
The pulsatile flow of blood through a catheterized artery is analyzed, assuming the blood as a two-fluid model with the suspension of all the erythrocytes in the core region as a Casson fluid and the peripheral region of plasma as a Newtonian fluid. The resulting non-linear implicit system of partial differential equations is solved using perturbation method. The expressions for shear stress, velocity, flow rate, wall shear stress and longitudinal impedance are obtained. The variations of these flow quantities with yield stress, catheter radius ratio, amplitude, pulsatile Reynolds number ratio and peripheral layer thickness are discussed. It is observed that the velocity distribution and flow rate decrease, while, the wall shear, width of the plug flow region and longitudinal impedance increase when the yield stress increases. It is also found that the velocity increases, but, the longitudinal impedance decreases when the thickness of the peripheral layer increases. The wall shear stress decreases non-linearly, while, the longitudinal impedance increases non-linearly when the catheter radius ratio increases. The estimates of the increase in the longitudinal impedance are considerably lower for the present two-fluid model than those of the single-fluid model.  相似文献   

7.
The dynamics of flexible filaments in viscous shear flow is of interest to biologists and engineers in a wide variety of applications involving folding and unfolding sequence of long-chain biomolecules like DNA, non-motile sperm and microalgae. It is also helpful in understanding the deformation of natural and synthetic fibers which can be applied in areas such as biotechnology. In the present work, deformation and migration behavior of non-motile unicellular phytoplankton diatoms subjected to viscous shear flow are considered. These unicellular diatoms develop into colonies which are made up of linked chains. The complex fluid-structure interaction is solved by developing a two-dimensional numerical model with an immersed boundary framework. The simulation consists of suspending an elastic filament mimicking a diatom chain in a shear flow at low Reynolds number. The governing continuity and Navier–Stokes equations are solved on a Cartesian grid arranged in a staggered manner. A forcing term is added to the momentum equation that incorporates the presence of flexible filament in the fluid domain. The discretization of the governing equation is based on a finite volume method, and a SIMPLE algorithm is used to compute pressure and velocity. A computer code is developed to perform numerical simulations, and the model is first verified with the deformation study of a tethered flexible filament in uniform fluid flow. Next, the shape deformations for flexible filament placed freely in shear flow are compared with the studies of previous researchers. Further, the present results are validated with Jeffery's equation for particles immersed in shear flow along with classification plot for filament orbit regimes. All of these comparisons provide a reasonable validity for the developed model. The effect of bending rigidity and shear rate on the deformation and migration characteristics is ascertained with the help of parametric studies. A non-dimensional parameter called Viscous Flow Forcing value (VFF) is calculated to quantify the parametric results. An optimum Viscous Flow Forcing value is determined which indicates the transition of filaments exhibiting either a recuperative (regaining original shape past deformation) or non-recuperative (permanently deformed) behavior. The developed model is successful in capturing fluid motion, diatom buckling, shape recurrences and recuperation dynamics of diatom chains subjected to shear flow. Further, the developed computational model can successfully illustrate filament-fluid interaction for a wide variety of similar problems.  相似文献   

8.
We develop an explicit algebraic Reynolds stress model (EARSM) for high-speed compressible shear flows and validate the model with direct numerical simulation (DNS) data of homogeneous shear flow and experimental data of high-speed mixing-layers. Starting from a pressure–strain correlation model that incorporates compressibility effects, the weak-equilibrium assumption is invoked to derive the EARSM closure expression. The resulting closure is fully explicit and physically realizable and is a function of mean flow strain rate, rotation rate, turbulent kinetic energy, dissipation rate, and gradient Mach number. Homogeneous shear flow calculations show that the model captures the asymptotic behavior of DNS quite well. Linear EARSM calculations of a plane supersonic mixing-layer are performed, and comparison with experimental data shows good agreement. Salient results are agreement of streamwise velocity similarity profiles, mixing-layer spreading rates, and capturing the Langley curve trend.  相似文献   

9.
A continuum extensible director theory was formulated to describe the isothermal, incompressible flow of uniaxial rodlike semiflexible liquid crystalline polymers. The model is strictly restricted to material that flow-align in shear, and that, in the absence of flow, are sufficiently far from the nematic-isotropic phase transition. The microstructure of the continuum is described by a variable length director, but the extensibility is finite. The model is an extension of the TIF (Transversely Isotropic Fluid) model of Ericksen (1960). The thermodynamic restrictions on the model parameters are found using the non-negative definiteness of the entropy production. The rheological material functions predicted by the model are calculated for steady simple shear and steady uniaxial extensional flows. In the rigid rod limit the model predictions agree with those of the TIF model, and for the finite extensibility case the model predictions are in agreement with those associated with flexible isotropic polymers: strong non-Newtonian shear viscosity, positive first normal stress differences, recoverable shear of order one, negative second normal stress differences, and a maximum in the steady uniaxial extensional viscosity.  相似文献   

10.
Cyclic mobility is exhibited by saturated medium to dense cohesionless soils during liquefaction, due to soil skeleton dilation at large shear strain excursions. This volume-shear coupling mechanism results in phases of significant regain in soil shear stiffness and strength, and limits the magnitude of cyclic shear deformations. Motivated by experimental observations, a plasticity model is developed for capturing the characteristics of cyclic mobility. This model extends an existing multi-surface plasticity formulation with newly developed flow and hardening rules. The new flow rule allows for reproducing cyclic shear strain accumulation, and the subsequent dilative phases observed in liquefied soil response. The new hardening rule enhances numerical robustness and efficiency. A model calibration procedure is outlined, based on monotonic and cyclic laboratory sample test data.  相似文献   

11.
In a companion paper, a simple analytical formulation has been established which provides the wall shear stress in laminar bubbly flows for idealised transverse void fraction distributions. In the present paper, this approach is applied to Poiseuille bubbly flows in circular ducts. New measurements of the void fraction profiles and wall friction angular distribution in a pipe are presented for a wide range of flow parameters. Approximating the void profiles by step-functions allows us to evaluate the wall friction with the above mentioned model. Results are shown to agree satisfactorily with measurements. Notably, negative wall shear stress and wall shear stress much higher than their single-phase flow counterpart at the same liquid flow rate are recovered. Therefore, the principal mechanisms responsible for friction modification are captured with this simple model.  相似文献   

12.
The particle migration effects and fluid–particle interactions occurring in the flow of highly concentrated fluid–particle suspension in a spatially modulated channel have been investigated numerically using a finite volume method. The mathematical model is based on the momentum and continuity equations for the suspension flow and a constitutive equation accounting for the effects of shear‐induced particle migration in concentrated suspensions. The model couples a Newtonian stress/shear rate relationship with a shear‐induced migration model of the suspended particles in which the local effective viscosity is dependent on the local volume fraction of solids. The numerical procedure employs finite volume method and the formulation is based on diffuse‐flux model. Semi‐implicit method for pressure linked equations has been used to solve the resulting governing equations along with appropriate boundary conditions. The numerical results are validated with the analytical expressions for concentrated suspension flow in a plane channel. The results demonstrate strong particle migration towards the centre of the channel and an increasing blunting of velocity profiles with increase in initial particle concentration. In the case of a stenosed channel, the particle concentration is lowest at the site of maximum constriction, whereas a strong accumulation of particles is observed in the recirculation zone downstream of the stenosis. The numerical procedure applied to investigate the effects of concentrated suspension flow in a wavy passage shows that the solid particles migrate from regions of high shear rate to low shear rate with low velocities and this phenomenon is strongly influenced by Reynolds numbers and initial particle concentration. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
In this work we study a version of the three constant differential-type Oldroyd constitutive relation which allows distinct objective time derivatives for the extra stress and the stretching. We integrate the constitutive equation and determine an equivalent history integral representation for this model for the general class of viscometric motions. For certain choices of the material parameters and initial conditions, we find that this model allows for the development of shear rate discontinuities in the flow domain as a steady viscometric flow is achieved. Correspondingly, we also give evidence that intense shear rate oscillations may occur during the transient period as an impulsively started viscometric flow in a channel tends to a steady state under a constant critical shear stress. This critical shear stress lies in an interval of values for which the material experiences the phenomenon of “flow yielding”. A qualitative comparison with experimental data is made for certain creams and greases. The material instabilities inherent in this constitutive theory for viscometric motions are suggestive of the instabilities that occur in many viscoelastic fluids such as sharkskin patterns, wavy fracture, and spurt flow.  相似文献   

14.
章光华  符松 《力学学报》2000,32(2):141-150
基于对可压缩湍流中脉动压力场和脉动速度场特征的理论分析以及DNS结果,建立了可均匀剪切湍流中压力-变形率关联的压缩性修正模式,应用这个模式,加上Sarkar等建立的脉动体胀率项(dilatational terms)的模式,预测可压缩均匀剪切湍流随时间的发展,所得雷诺应力各是性张量的平衡值与Blaisdell等的DNS数据非常一致。这个模式准确地预测出均匀剪切湍流中压缩性导致的雷诺应力结构的“流向  相似文献   

15.
Experimental measurements are used to validate a numerical model of a dynamic resonant wall shear stress sensor. The numerical model consists of an unsteady two-dimensional boundary-layer model for the flow and a simple mechanical model for the sensor itself. The sensor’s sensitivity to wall shear stress is experimentally determined in a flat-plate boundary layer, and the results agree closely with those from the numerical simulations. Using the validated model, it is determined that the energy lost in each sensor oscillation due to the interaction between the sensor and fluid increases with increasing mean wall shear stress.  相似文献   

16.
This work focuses on gas/non-Newtonian power-law fluid stratified pipe flow. Two different theoretical approaches to obtain pressure gradient and hold-up predictions are presented: the steady fully developed two-fluid model and the pre-integrated model. The theoretical predictions are compared with experimental data available for horizontal and for slightly downward inclined air/shear thinning fluid stratified flow taken from literature. The predictions of the pre-integrated model are validated showing a good agreement when compared with experimental data. The criteria for the transition from the stratified flow pattern are applied to gas/non-Newtonian stratified flow. The neutral stability analysis (smooth/wavy stratified flow) and the well-posedness (existence region of stratified flow) of governing equations are carry out. The predicted transition boundaries are obtained using the steady fully developed two-fluid model and the pre-integrated model, where the shape factors and their derivatives are accounted for. A comparison between the predicted boundaries and experimental flow pattern maps is presented and shows a good agreement. A comment on the shear stress modeling by the pre-integrated model is provided.  相似文献   

17.
Influence of void nucleation on ductile shear fracture at a free surface   总被引:7,自引:0,他引:7  
An approximate continuum model of a ductile, porous material is used to study the influence of the nucleation and growth of micro-voids on the formation of shear bands and the occurrence of surface shear fracture in a solid subject to plane strain tension. Bifurcation into diffuse modes is analysed for a plane strain tensile specimen described by these constitutive relations, which account for a considerable plastic dilatancy due to void growth and for the possibility of non-normality of the plastic flow law. In particular, bifurcation into surface wave modes and the possible influence of such modes triggering shear bands is investigated. For solids with initial imperfactions such as a surface undulation, a local material inhomogeneity on an inclusion colony, the inception and growth of plastic flow localization is analysed numerically. Both the formation of void-sheets and the final growth of cracks in the shear bands is described numerically. Some special features of shear band development in the solid obeying non-normality are studied by a simple model problem.  相似文献   

18.
We apply the observability rank condition to study the observability of various viscoelastic fluids under imposed shear or extensional flows. In this paper the observability means the ability of determining the viscoelastic stress from the time history of the observations of the first normal stress difference. We consider four viscoelastic models: the upper convected Maxwell (UCM) model, the Phan–Thien–Tanner (PTT) model, the Johnson–Segalman (JS) model and the Giesekus model. Our study reveals that all of the four models have observability for all stress components almost everywhere under shear flow whereas under extensional flow most of the models have no observability for the shear stress component. More specifically, for UCM and JS models under imposed shear flow, the observations of the first normal stress difference allow the reconstruction of all components of viscoelastic stress. For UCM and JS models under extensional flow, the two normal stress components can be determined from the measurements of the first normal stress difference; the shear stress component does not affect the evolution of the normal stress components and consequently it cannot be extracted from the observations. Under shear flow, the PTT and Giesekus models have observability almost everywhere. That is, all components of the viscoelastic stress can be determined from the observations when the vector formed by the components of viscoelastic stress does not lie on a certain surface. Under extensional flow, the PTT model has observability almost everywhere for normal stress components whereas the Giesekus model has observability almost everywhere for all stress components. We also run simulations using the unscented Kalman filter (UKF) to reconstruct the viscoelastic stress from observations without and with noises. The UKF yields accurate and robust estimates for the viscoelastic stress both in the absence and in the presence of observation noises.  相似文献   

19.
The rheological characterisation of concentrated shear thickening materials suspensions is challenging, as complicated and occasionally discontinuous rheograms are produced. Wall slip is often apparent and when combined with a shear thickening fluid the usual means of calculating rim shear stress in torsional flow is inaccurate due to a more complex flow field. As the flow is no longer “controlled”, a rheological model must be assumed and the wall boundary conditions are redefined to allow for slip. A technique is described where, by examining the angular velocity response in very low torque experiments, it is possible to indirectly measure the wall slip velocity. The suspension is then tested at higher applied torques and different rheometer gaps. The results are integrated numerically to produce shear stress and shear rate values. This enables the measurement of true suspension bulk flow properties and wall slip velocity, with simple rheological models describing the observed complex rheograms.  相似文献   

20.
 We investigate the utility of particle imaging velocimetry (PIV) for performing kinematic measurements in wet aqueous foam with a liquid film beneath it. The flow velocities are measured near the walls of a square cross-section horizontal duct. The flow velocities are useful for validating the rheological models. We show that there is a discrepancy between the velocity profiles in the wet foam and the Bingham plastic model of flow. The velocity measurements reveal a more complex flow pattern, which may be analysed following three different regimes: a plug flow, a shear flow in a vertical plane and a three-dimensional shear flow. The transition between the plug flow and the shear flows may be explained by a shear-induced migration of bubbles. Received: 25 April 2000 / Accepted: 26 February 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号