首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
A series of WO(3)/ZrO(2) catalysts with tungsten (W) loadings ranging from 0.5 to 11.4 wt% was prepared by incipient wetness impregnation on a preformed ZrO(2) support. The oxidic catalysts were characterized using XRD, Raman spectroscopy, XPS, ISS, and IR spectroscopy. XRD and Raman results showed that the ZrO(2) support was predominantly present in the monoclinic form. XPS and Raman measurements indicated the formation of increasing amounts of W interaction species for catalysts with W loadings up to 8.8 wt% WO(3). In addition to the W interaction species, bulk WO(3) was also observed for catalysts with W loadings > or = 3.0 wt% WO(3). Comparison of the XPS results with coverage measurements by ISS and CO adsorption suggests that the W surface phase is in the form of two-dimensional polymeric patches for catalysts with W loadings 3.0 < or = wt% WO(3) < or = 4.5. For catalysts with W loadings >4.5 wt% WO(3), the results indicated an additional build-up of a bilayer (or multilayer) polymeric W species. Analysis of the hydroxyl region of ZrO(2) by IR spectroscopy showed that initial additions of W occur on the high frequency hydroxyl group. A schematic for the structure of the catalysts has been proposed based on the above observations.  相似文献   

2.
Tungstated zirconias prepared from W deposition on zirconium oxyhydroxide are reportedly active for alkane isomerization, whereas solids synthesized by impregnation of zirconia are inactive. The origin of the differences between the two preparations is not fully understood. The present paper examines the influence of W surface density and the nature of the support on the surface structure, development of the acidity, and catalytic performance of WO(x)()/ ZrO(2) catalysts. Two series of catalysts containing W surface densities up to 5.2 at. W/nm(2) were prepared by pore volume impregnation of two different supports: zirconium oxyhydroxide and predominantly tetragonal zirconia (65% tetragonal, 35% monoclinic). The texture and structure of the catalysts were investigated by BET measurements, X-ray diffraction, Raman and infrared spectroscopy. The catalytic activity was tested for 2-propanol dehydration and n-hexane isomerization. For catalysts obtained by impregnation of Zr oxyhydroxide, Raman results showed that W was present as a surface phase. Infrared spectra indicated an increase in the degree of polymerization of W species with increasing W surface density. The development of the acidity was monitored by lutidine adsorption and desorption at 523 K, followed by infrared spectroscopy. The results indicated the presence of a threshold of W surface density at 1.3 at. W/ nm(2) for the detection of these acid sites, followed by a progressive increase in their abundance with increasing W surface density. The development of Br?nsted acidity correlated with the evolution of the infrared bands attributed to "extensively" polymerized W species. A direct relationship was observed between the abundance of Br?nsted acid sites and the catalytic activity for 2-propanol dehydration. For n-hexane isomerization, compared to 2-propanol dehydration, a higher threshold of W surface densities (3.4 at. W/ nm(2)) for the development of activity was observed. The difference was attributed to stronger Br?nsted acid sites required for n-hexane isomerization. The catalysts prepared by impregnation of zirconia exhibited comparable behavior. For a given W surface density, the crystalline composition of the support (tetragonal/monoclinic zirconia), the W surface structure, abundance of Br?nsted acid sites, and catalytic performance were similar. Thus, in an apparent variance with some of the results reported in the literature with respect to the influence of preparation methods, no significant effect of the initial form of the support (Zr oxyhydroxide versus predominantly tetragonal zirconia) was evidenced.  相似文献   

3.
利用浸渍法制备了一系列具有不同W/Zr比和不同WO3-ZrO2焙烧温度的1%pd/WO3-ZrO2催化剂.通过X射线衍射、N2吸附、氨程序升温吸附、吡啶吸附红外光谱和程序升温还原方法表征了催化剂的晶体结构、表面状态以及酸性.结果表明,制备条件对W和Pd的表面状态具有很人的影响.随着W/Zr比的增加和焙烧温度的提高,催化剂表而的WOx经历了从聚钨酸物种到聚钨酸/WO3晶体共存再到WO3品体颗粒的转化.W/Zr比为0.2且焙烧湍度为1073K的催化剂具有最多的聚钨酸物种,而该催化剂具有最好的活性.因此,聚钨酸物种的最决定了催化剂的活性.Pd的分散状态只依赖于WO3-ZrO2的焙烧温度.Pd物种分散性好,则乙酸选择性高,而分散性差的人颗粒Pd会导致乙烯的燃烧反应.  相似文献   

4.
WO3-ZrO2 catalysts were synthesized by precipitating the aqueous solutions of zirconium oxynitrate and ammonium metatungstate with ammonium hydroxide. The white slurry precipitate was treated under three different conditions. In the as-made materials, the amorphous phase was formed in the aged and refluxed samples, while well-crystallized tetragonal and monoclinic phases were obtained in the hydrothermally treated sample. The real amount of tungsten loaded in the samples was similar for the three samples, independently of the treatments; however, the tungsten surface atomic density in the annealed WO3-ZrO2 samples varied between 6 and 9 W atoms/nm2. Two different contrast types of aggregates were determined by scanning electron microscopy, the white particles which are rich in W, and the gray ones which are rich in zirconium; both of them were formed in the calcined solids prepared under aging or reflux condition. A very high dispersion of tungsten species on the zirconia surface was achieved in the hydrothermally treated sample. The degree of the interaction between WO(x) and ZrO2 surface strongly modified the Zr-O bond lengths and bond angles in the structure of tetragonal zirconia as proved by X-ray diffraction analysis and the Rietveld refinement. The catalyst obtained under hydrothermal condition exhibited the highest dispersion of tungsten species in the zirconia, which in turn causes strong structural deformation of the tetragonal ZrO2 phase responsible of the strongest surface acidity and, consequently, the optimum catalytic activity for n-hexane isomerization.  相似文献   

5.
The reaction of the dinuclear peroxotungstate, [(n-C4H9)4N]2[{WO(O2)2}2(mu-O)] (II), with H2O2 gives the novel mu-eta1:eta1-peroxo-bridging dinuclear tungsten species, [(n-C4H9)4N]2[{WO(O2)2}2(mu-O2)] (I), which has been characterized by X-ray crystallography, elemental analysis, IR, Raman, UV-vis, and 183W NMR. Only I is active for the epoxidation of cyclic, internal, and terminal olefins, whereas II is inactive for each. The low XSO (XSO=(nucleophilic oxidation)/(total oxidation)) value of I (0.18+/-0.02) in comparison with that of II (0.39+/-0.01) for the stoichiometric oxidation of thianthrene 5-oxide, which is a mechanistic probe for determining the electronic character of an oxidant, reveals that I is more electrophilic than II. On the basis of the kinetic and spectroscopic results, the catalytic epoxidation proceeds by the reaction of I with an olefin to form II and the corresponding epoxide followed by the regeneration of I by the reaction of II with H2O2.  相似文献   

6.
以Ni、W为催化剂的活性金属组分,考察在金属组分浸渍液中加入有机络合剂对催化剂性质及加氢脱硫、脱氮性能的影响。结果表明,络合剂与金属组分共浸渍更有利于金属组分的分散;提高络合剂用量,既有利于提高主活性金属组分WO3在载体表面的分散,又能促进六配位八面体Ni物种及高加氢活性相NiWO3的形成;焙烧温度具有调变催化剂金属组分分散性及酸性的双重作用,在适宜的焙烧温度下制得的催化剂具有较好的酸性及加氢活性,主要表现为较高的加氢脱硫及脱氮活性。  相似文献   

7.
Two series of WO(x)/TiO(2) catalysts, containing W surface densities up to 4.4 W atoms/nm(2), were prepared by pore volume impregnation of two different supports, titanium oxyhydroxide (amorphous) or titanium oxide (crystallized, 100% anatase). The influence of W surface density and the nature of the support on the surface structure, development of the acidity, and catalytic performances were examined. The texture and structure of the catalysts were investigated by Brunauer-Emmett-Teller measurements, X-ray diffraction (XRD), and Raman and infrared spectroscopy. The catalytic activity was tested for 2-propanol dehydration and n-hexane isomerization. For catalysts obtained by impregnation of titanium oxide, XRD and Raman results showed that W was present as a surface phase. Infrared spectra indicated an increase in the degree of polymerization of W species with increasing W surface density. CO and lutidine adsorption, followed by infrared spectroscopy, showed an increase in the strength and abundance of Br?nsted acid sites (measured after lutidine desorption at 573 K) with the W surface density above a threshold of 1.3 W atoms/nm(2). The development of Br?nsted acidity correlated with the evolution of the infrared bands attributed to polymerized W species. A direct relationship was observed between the concentration of Br?nsted acid sites and the catalytic activity for 2-propanol dehydration. Catalytic activity, for n-hexane isomerization, appears to be associated with the presence of highly condensed W species. The catalysts synthesized by impregnation of titanium oxyhydroxide exhibited a comparable behavior. Hence, for a given W surface density, the W surface structure, concentration of Br?nsted acid sites, and catalytic performances were similar. Thus, no significant effect of the initial form of the support (titanium oxyhydroxide versus titanium oxide; 100% anatase) was evidenced.  相似文献   

8.
In this work,the influence of CO2 on the structural variation and catalytic performance of Na2WO4/Mn/Si O2 for oxidative coupling of methane to ethylene was investigated. The catalyst was prepared by impregnation method and characterized by XRD,Raman and XPS techniques. Appropriate amount of CO2 in the reactant gases enhanced the formation of surface tetrahedral Na2WO4 species and promoted the migration of O in MOx,Na,W from the catalyst bulk to surface,which were favorable for oxidative coupling of methane. When the molar ratio of CH4/O2/CO2 was 3/1/2,enriched surface tetrahedral Na2WO4 species and high surface concentration of O in MOx,Na,W were detected,and then high CH4 conversion of 33.1% and high C2H4 selectivity of 56.2% were obtained. With further increase of CO2 in the reagent gases,the content of active surface tetrahedral Na2WO4 species and surface concentration of O in MOx,Na,W decreased,while that of inactive species(Mn WO4 and Mn2O3) increased dramatically,leading to low CH4 conversion and low C2H4 selectivity. It could be speculated that Na2WO4 crystal was transformed into Mn WO4 crystal with excessive CO2 added under the reaction conditions. Pretreatment of Na2WO4/Mn/Si O2 catalyst by moderate amount of CO2 before OCM also promoted the formation of Na2WO4 species.  相似文献   

9.
Catalytic performance of W/HZSM-5 in selective catalytic reduction of NO by acetylene was investigated in a reaction system with 1600 ppm of NO, 800 ppm of C2H2, and 9.95% of O2 in He. It was found that promotional effect of tungsten on the reaction is strongly affected by catalyst preparation conditions and Si/Al ratio of the parent zeolite. A better dispersion of tungsten on HZSM-5 and relatively more monomeric tungsten species were found on 8%W/HZSM-5 prepared by impregnation of the zeolite with lower SiO2/A1203 ratio (25) in ammonic ammonium tungstate solution and calcination of the resulting material at higher temperature (550 ℃). The highest NO conversion to N2 of 86.3% in the reaction system was obtained at 350 ℃ over the catalyst thus prepared. The mechanism of monomeric tungsten species improving the C2H2-SCR can be attributed to accelerating the formation of active nitrate species.  相似文献   

10.
Aqueous peroxotungstates have been studied from pH 0.5 to 9.0, over a range of peroxide concentrations. Although equilibria are not always established, many anions can be identified by 17O NMR because the ratio of deltaO(W anion)/deltaO(known Mo anion) is consistently 79 +/- 3%. They are [WO3(HO2)]-; [WO(OH)(O2)2]-; [WO(OH2)(O2)2]0; [W2O3(O2)4]2-; [W2O3(OH)(O2)4]3-; [W4O12(O2)2]4-; [W7O23(O2)]6- and [W7O22(O2)2]6-. Their pKa values, where measurable, are about 2 units lower than the corresponding peroxomolybdates, e.g. 0.0 for [WO(OH2)(O2)2]0 and 8.0 for [W2O3(O2)4]2-. Other peroxotungstate species are also present but can only be broadly identified. These include Keggin structures with relatively low peroxo content, and a very unsymmetrical anion appearing at pH ca. 7 that bears no obvious structural relationship to any species previously reported. The main product from the reaction of powdered W metal with 30% aqueous peroxide is provisionally identified as the symmetrical anion [W6O13(OH)2(OH2)2(O2)5]2-, although other minor species are also formed, probably having fewer peroxo substituents.  相似文献   

11.
The molecular structures, oxidation states, and reactivity of 3 and 6% CrO3/ZrO2 catalysts prepared by incipient wetness impregnation were examined under different conditions. The in situ Raman spectroscopic studies under dehydrated conditions reveal that the 3 and 6% CrO3/ZrO2 catalysts possess equal amounts of monochromate and polychromate species. Consequently, monolayer coverage on this ZrO2 support is about 3% CrO3. The 6% CrO3/ZrO2 possesses an additional Raman band due to Cr2O3 crystals corresponding to the remaining 3% CrO3. Furthermore, during reaction conditions the polychromate species is preferentially reduced, the monochromate species are slightly affected, and the Cr2O3 crystals are not affected. The in situ UV-vis-NIR diffuse reflectance spectroscopy results reveal that under steady-state reaction conditions the extent of reduction and edge energy position of surface Cr6+ cations increase with an increase in reduction environment for the 3 and 6% CrO3/ZrO2 samples. Propane oxidative dehydrogenation (ODH) studies reveal that the catalytic activity expressed in moles of propane converted per gram catalyst per second is similar for the two catalysts, which is consistent with equal amounts of molecularly dispersed chromia present. The turnover frequency for the 6% CrO3/ZrO2 catalyst is, however, smaller than that for the 3% CrO3/ZrO2 sample due to the presence of Cr2O3 crystals, which are relatively inactive for propane ODH. For this catalytic system and for the experimental conditions used, propene, CO, and CO2 are primary products. Furthermore, the 33-39% propene selectivity is not affected by the C3H8/O2 ratio for both catalysts. Structure-reactivity studies suggest that the molecularly dispersed species are present in equal amounts in the 3 and 6% CrO3/ZrO2 samples as Cr6+ monochromate and polychromate species are the most effective catalytic active sites taking part in the propane ODH reaction.  相似文献   

12.
XRD (X-ray diffraction), BET (Brunauer-Emmett-Teller), LRS (laser Raman spectra), XPS (X-ray photoelectron spectroscopy), and TPR (temperature-programmed reduction) are used to investigate the surface properties of CuO/WO3/Ce(0.5)Zr(0.5)O2 samples. The results indicate that (1) tungsten oxide can be highly dispersed on Ce(0.5)Zr(0.5)O2 (denoted as CZ hereafter) solid solution, with a dispersion capacity of about 0.8 mmol WO(3)/(100 m2 CZ), and comparatively, the supported tungsten oxide species are preferentially interacted with ceria component on the surface of CZ; (2) for CuO/WO3/CZ samples with a half-monolayer WO3 loading, i.e., xCu-0.4W-CZ series, the surface of CZ is only partially covered by the preloaded WO3) and the supported copper oxide species are dispersed on the remaining surface vacant sites on CZ as well as on top of the preloaded tungsten oxide, while for the samples preloaded with a full-monolayer WO3, i.e., xCu-0.8W-CZ series, only dispersed on the top of the preloaded tungsten oxide monolayer; (3) the effect of the loading amount of WO3 on the reduction property of Cu2+ ions in a series of CuO/WO3/CZ samples has been observed and tentatively attributed to the formation of WO3 monolayer on CZ and the different coordination environments of the dispersed Cu2+ ions are discussed on the basis of the consideration of the incorporation model proposed previously (Chen, Y.; Zhang, L. Catal. Lett. 1992, 12, 51).  相似文献   

13.
采用3种不同的浸渍过程制备了系列WO3改性MnOx/TiO2催化剂,并采用BET比表面积测试、X射线衍射、拉曼光谱、H2程序升温还原、高分辨扫描电镜和原位红外光谱等技术进行表征.结果显示,一步浸渍法和先钨后锰的分布浸渍法制备的催化剂中,Mn和W的协同作用提高了活性组分的分散状态,并阻止了钛载体的转晶;在所有的Mn基催化剂中,Mn物种主要以Mn2O3形式存在,但在15%MnOx-5%WO3/TiO2中出现了少量的MnO2;WO3的加入大大增强了催化剂的还原能力,提高了其表面酸位尤其是B酸的数量与强度,并促进了活性中间物(NH2)的生成.表面Lewis酸在低温SCR反应起主要作用,并且发现NH2也是活性很高的物种.在NH3低温催化还原NO的反应中,一步浸渍法制备的催化剂活性最高.  相似文献   

14.
运用BET、XRD、FT-Raman以及微量吸附量热等手段对由浸渍三种晶型氧化锆及其前体氢氧化锆制备的负载钨催化剂的结构及其表面酸性进行了研究。结果表明起始原料和制备条件对氧化锆的结构有显著影响。浸渍在氢氧化锆上的钨物种会使氢氧化锆转变为四方晶型氧化锆。但浸渍于氧化锆上的钨物种使氧化锆发生晶型转变相对较难。负载钨催化剂表面强酸位的形成与载体晶型、表面钨物种WOx以及WOx与载体氧化锆之间的相互作用有关。催化剂上的强酸位可因残留的Na+离子所毒化或阻抑。少量Y3+离子对表面酸性则无明显影响。  相似文献   

15.
ZrO2表面B2O3的分散及其作用状态   总被引:4,自引:0,他引:4  
用XPS、FT IR和FT Raman等技术研究了ZrO2表面B2O3的分散及其作用状态,测定了B2O3在ZrO2表面的分散阈值.结果表明:B2O3在ZrO2表面可以三配位BO3和四配位BO4结构单元存在;载体ZrO2的预焙烧温度和硼含量对B2O3的分散及作用状态有较大影响,并改变BO3与BO4结构单元之间的比例.实验测得B2O3在ZrO2载体上的单层分散阈值为0.05 gB2O3/gZrO2(或B2O3的质量分数w=4.76%),处在此单层中的硼原子以BO4为结构单元直接与ZrO2表面相作用.只有当B2O3的负载量超过此(单层)分散阈值时, BO3结构单元才会形成.  相似文献   

16.
研究了H3PO4-BF3/ZrO2及H3PO4-BF3-H2SO4/ZrO2催化剂对异构烷烃烷基化反应的催化作用。就载体的焙烧温度、活性组分的浓度、BF3及H2SO4的添加及反应温度对催化剂活性的影响进行了较为详尽的研究。  相似文献   

17.
A WC-supported S2O2-8/ZrO2(PSZ) catalyst was prepared and characterized by means of XRD, BET, FTIR and XPS. The isomerization of n-pentane over the catalyst was investigated as well. The results show that the skeletal isomerization and the crack of n-pentane proceed simultaneously on WC-supported S2O2-8/ZrO2 catalyst. The addition of tungsten carbide showed a significant enhancement in the activity and stability of the catalyst for n-pentane isomerization. The catalyst showed evidently a better activity than S2O2-8/ZrO2 supported by Pt and WO3. The results can be interpreted by the existence of the tungsten oxycarbide compound(WCxOy) with carbidic, oxide and acidic sites.  相似文献   

18.
以氧氯化锆为锆原,氨水为沉淀剂,硫酸溶液为浸渍液,通过沉淀-浸渍法制备SO2-4/ZrO2(SZ)酯化催化剂,其结构经BET、X-射线衍射(XRD)、傅立叶变换红外光谱(FT-IR)及扫描电子显微镜(SEM)表征.结果表明:随着焙烧温度升高,催化剂的比表面积依次降低,孔径增大,氧化锆的晶态由无定形态转化为四方晶态再转化为单斜晶态;于600℃焙烧时,催化剂形成的S=O键红外吸收峰最强;于700℃焙烧时,催化剂结构被破坏.在丙烯酸与十八醇的酯化反应中对催化剂进行活性测试.结果表明:600℃焙烧的催化剂产率最高(96.4%).  相似文献   

19.
ZrO_2表面 B_2O_3的分散及其作用状态   总被引:1,自引:0,他引:1  
用 XPS、 FT IR和 FT Raman等技术研究了 ZrO2表面 B2O3的分散及其作用状态,测定了 B2O3在 ZrO2表面的分散阈值 .结果表明: B2O3在 ZrO2表面可以三配位 BO3和四配位 BO4结构单元存在;载体 ZrO2的预焙烧温度和硼含量对 B2O3的分散及作用状态有较大影响,并改变 BO3与 BO4结构单元之间的比例 .实验测得 B2O3在 ZrO2载体上的单层分散阈值为 0.05 gB2O3/gZrO2(或 B2O3的质量分数 w=4.76%),处在此单层中的硼原子以 BO4为结构单元直接与 ZrO2表面相作用 .只有当 B2O3的负载量超过此(单层)分散阈值时, BO3结构单元才会形成 .  相似文献   

20.
Catalytic Combustion of Methane over MnOx/ZrO2-Al2O3 Catalysts   总被引:4,自引:0,他引:4  
MnOx/Al2O3 and MnOx/ZrO2-Al2O3 catalysts were prepared by incipient wetness impregnation of Mn(CH3COO)2 on the corresponding supports, followed by the characterization using X-ray diffraction (XRD). temperature programmed reduction (TPR) and BET surface area techniques. The result shows the BET surface area of ZrO2-Al2O3 is lower than that of Al2O3 due to the loading of ZrO2.However tile resulted MnOx/ZrO2-Al2O3 catalyst exhibits higher activity for methane combustion than MnOx/Al2O3, because the addition of ZrO2 onto Al2O3 is beneficial for the dispersion of Mn species and the improvement of the lattice oxygen activity in MnOx. subsequently the activation of methane during combustion. The optimum loading of Zr in MnOx/ZrO2-Al2O3 is in the range of 5%-10% correlated with the calcination temperatures of catalyst supports.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号