首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In aqueous capillary electrophoresis the electroosmotic flow (EOF) can be strongly suppressed or eliminated by coating the capillary surface silanols either by buffer additive adsorption or chemical modification. Hydrophilic coatings, e.g., polyvinyl alcohol (PVA) proved to be most efficient for EOF control in applications like DNA analysis. In nonaqueous capillary electrophoresis (NACE), however, the EOF cannot be totally suppressed with these capillaries and coating efficiency turned out to be solvent-depending. In this paper, fused-silica capillaries with monomeric and polymeric coatings differing in hydrophobicity and chemical properties (vinyl, vinyl acetate, vinyl alcohol and acrylates with different alkyl chain length) were investigated. Besides studying the EOF characteristics with different organic solvents and water, gas chromatography (GC) measurements were carried out to probe the silanol reduction via ether retention and the surface hydrophobicity by retention of nonane. Good correlations between GC results and EOF magnitude could be found. It could be demonstrated that the polymeric coating has to be solvatized by the buffer solvent to reduce the EOF. The PVA coating was optimal for aqueous systems but not effective for some nonaqueous buffers. On the other hand, polyvinyl acetate and polyethyl acrylate as polymeric coatings proved to be optimal to reduce the EOF in NACE.  相似文献   

2.
This paper reports the fabrication of polyester-toner (PT) electrophoresis microchips with improved analytical performance and extended lifetime. This has been achieved with a better understanding about the EOF generation and the influence of some parameters including the channel dimensions (width and depth), the injection mode, and the addition of organic solvent to the running buffer. The analytical performance of the PT devices was investigated using a capacitively coupled contactless conductivity detector and inorganic cations as model analytes. The proposed devices have exhibited EOF values of (3.4 ± 0.2) × 10(-4) cm(2) V(-1) s(-1) with good stability over 25 consecutive runs. It has been found that the EOF magnitude depends on the channel dimension, i.e. the wider the channel, the higher the EOF value. The separation efficiency for inorganic cations ranged from 13 000 to 50 000 plates/m. The LOD found for K(+) , Na(+) , and Li(+) were 4.2, 7.3, and 23 μM, respectively. In addition, the same PT device has been used by three consecutive days. Lately, due to improved analytical performance, it was carried out by the first time the detection of inorganic cations in real samples such as energetic drinks and pharmaceutical formulations.  相似文献   

3.
Nonaqueous capillary electrophoresis using a titania-coated capillary   总被引:1,自引:0,他引:1  
In this work, an ordered mesoporous titania film was introduced to coat a capillary by means of the sol-gel technique. Its electroosmotic flow (EOF) property was investigated in a variety of nonaqueous media (methanol, formamide and N,N'-dimethylformamide and mixtures of methanol and acetonitrile). The titania-coated capillary exhibited a distinctive EOF behavior, the direction and magnitude of which were strongly dependent on various parameters such as the solvent composition, apparent pH (pH*) and the electrolytes. The nonaqueous capillary electrophoresis separation of several alkaloids was investigated in the positively charged titania-coated capillary. Comparison of separation between coated and uncoated capillaries under optimal nonaqueous conditions was also carried out.  相似文献   

4.
Zhang L  Zhang W  Ping G  Zhang Y  Kettrup A 《Electrophoresis》2002,23(15):2417-2423
A theoretical study on the velocity of electroosmotic flow (EOF) and the retention times of neutral solutes under multiple-step gradient of capillary electrochromatography (CEC) was carried out, focusing on that with three kinds of mobile phases. Through the model computations, the detaining time of the second kind of mobile phase in the column was proved to play an important role in affecting EOF. The variation speed of EOF was shown to be determined by the differences among dead times in different steps. In addition, the prediction of the retention times of 13 aromatic compounds under gradient mode was performed with the deduced equations. A relative error below 3.3% between the calculated and experimental values was obtained, which demonstrated the rationality of the theoretical deduction. Our study could not only improve the comprehension of stepwise gradient elution, but also be of significance for the further optimization of separation conditions in the analysis of complex samples.  相似文献   

5.
The preparation and characterization of p-tert-butylcalix[4]arene-1,3-bis(allyloxyethoxy)ether (CA[4]-BAE) chemically coated capillaries via a free-radical reaction with vinyltriethoxysilane (VTES) that was attached onto the inner wall previously were carried out. IR spectra and decreased electroosmotic flow (EOF) suggested that the capillary was successfully coated with CA[4]-BAE. A slight slope of EOF versus pH at 5 < pH < 9 would help to make the separation reproducible. The CA[4]-BAE-coated capillary showed improved separations of toluidine isomers, naphthol isomers and polycyclic aromatic hydrocarbons (PAHs) compared with an uncoated capillary. The special selectivity indicates that there is a certain extent of host-guest interactions between the solutes and the CA[4]-BAE coating.  相似文献   

6.
Tang G  Yan D  Yang C  Gong H  Chai JC  Lam YC 《Electrophoresis》2006,27(3):628-639
Joule heating is inevitable when an electric field is applied across a conducting medium. It would impose limitations on the performance of electrokinetic microfluidic devices. This article presents a 3-D mathematical model for Joule heating and its effects on the EOF and electrophoretic transport of solutes in microfluidic channels. The governing equations were numerically solved using the finite-volume method. Experiments were carried out to investigate the Joule heating associated phenomena and to verify the numerical models. A rhodamine B-based thermometry technique was employed to measure the solution temperature distributions in microfluidic channels. The microparticle image velocimetry technique was used to measure the velocity profiles of EOF under the influence of Joule heating. The numerical solutions were compared with experimental results, and reasonable agreement was found. It is found that with the presence of Joule heating, the EOF velocity deviates from its normal "plug-like" profile. The numerical simulations show that Joule heating not only accelerates the sample transport but also distorts the shape of the sample band.  相似文献   

7.
The aim of the present study was to develop an analytical method for measuring amounts of a dendro[60]fullerene (DF) which is a highly water-soluble [60]fullerene derivative. We tried to define a straightforward methodology using capillary zone electrophoresis, a method which, to our knowledge, has not yet been used to that purpose. Preliminary assays showed that DF has almost the same mobility than the electroosmotic flow (EOF) but in the opposite direction. Attempts were carried out to reduce the EOF and positive results were obtained by adding hydroxypropylcellulose to the background electrolyte. In order to define optimal operating conditions, a Taguchi experimental plan was used to study simultaneously the effects of the main parameters that are pH, ionic strength, methanol amount and hydroxypropylcellulose concentration. Two parameters are of the utmost importance as to their effect on the migration time and separation efficiecy: pH and ionic strength whose actions are opposite.  相似文献   

8.
Enantiomeric separations in capillary electrochromatography (CEC) carried out using a continuous-bed chiral stationary phase (CSP) based on the macrocyclic antibiotic, vancomycin, is presented. The continuous beds were prepared from methacryloxypropyl modified fused silica capillaries (100 microm ID) by in situ copolymerization of N-(hydroxymethyl)acrylamide and piperazine diacrylamide with vinyl sulfonic acid comonomer used to introduce ionic functionality and thus a strong electroosmotic flow (EOF). The CSP was subsequently prepared by immobilizing the vancomycin stationary phase by reductive amination. Preliminary results have indicated that an extremely strong EOF is obtained in both the nonaqueous polar organic (15.2 x 10(-5) cm2 V(-1) s(-1) and the aqueous reversed-phase modes of operation (8.5 x 10(-5) cm2 V(-1) s(-1)). Enantioselectivity was obtained for four racemic compounds, the best of which was in the case of thalidomide which was separated in 10 minutes with high resolution (Rs = 2.5) and efficiency (120,000 plates meter(-1)) values.  相似文献   

9.
A new environmentally friendly method is developed for preventing nonspecific biomolecules from adsorption on poly(dimethylsiloxane) (PDMS) surface via in situ covalent modification. o-[(N-Succinimdyl)succiny]-o'-methyl-poly(ethylene glycol) (NSS-mPEG) was covalently grafted onto PDMS microchannel surface that was pretreated by air-plasma and silanized with 3-aminopropyl-triethoxysilanes (APTES). The modification processes were carried out in aqueous solution without any organic solvent. The mPEG side chains displayed extended structure and created a nonionic hydrophilic polymer brushes layer on PDMS surface, which can effectively prevent the adsorption of biomolecules. The developed method had improved reproducibility of separation and stability of electroosmotic flow (EOF), enhanced hydrophilicity of surface and peak resolution, and decreased adsorption of biomolecules. EOF in the modified microchannel was strongly suppressed, compared with those in the native and silanized PDMS microchips. Seven amino acids have been efficiently separated and successfully detected on the coated PDMS microchip coupled with end-channel amperometric detection. Relative standard deviations (RSDs) of their migration time for run-to-run, day-to-day and chip-to-chip, were all below 2.3%. Moreover, the covalent-modified PDMS channels displayed long-term stability for 4 weeks. This novel coating strategy showed promising application in biomolecules separation.  相似文献   

10.
A method is described for the indirect determination of the mobility of the electroosmotic flow (EOF), which can be carried out within a few minutes even for very low mobilities. It is independent of the direction of the EOF. It is based on the comparison of the measured mobilities of two oppositely charged reference ions (tetraphenylphosphonium and tetraphenylborate) with given mobilities in different organic solvents (methanol, acetonitrile, N,N-dimethylformamide, N,N-dimethylacetamide, propylene carbonate) at ionic strengths between 5 and 50 mM. The method is based on the sequential movement of the reference ions in a three-step process: first by a laminar flow to a certain position in the separation capillary, followed by electromigration due to application of voltage, and pressurised migration towards the detector. In this way the total mobilities of the reference ions can be determined from their residence times, and the difference to their known actual mobilities gives the mobility of the EOF. The method avoids misinterpretations caused by system- and eigen-peaks, which often bias the results especially when a conductivity detector is used. The method is suitable for all solvents, and is an advantage especially for organic and mixed aqueous–organic background electrolytes with high UV absorbance.  相似文献   

11.
Much capillary electrochromatography (CEC) work is carried out on bonded silica packings which offer many advantages: the number of such packings which are available; the fact that the chemistry of bonding and the separation process are fairly well understood; and the possibility of the transfer to CEC of existing HPLC methods. Packing methods for the preparation of CEC columns have been investigated. The problems inherent in the use of burned-in frits remains an obstacle, but can be at least partially overcome by minimising the length and by silanisation. The influence of a variety of mobile phase variables on aspects of CEC is in agreement with theory for: ionic strength, organic content (including isoeluotropy), and pH. Temperature can be used as a variable to change column selectivity in CEC. The influence of pH on electroosmotic flow (EOF) by changing the degree of ionisation of residual silanol groups is similar for a wide range of neutral bonded groups, but is much less marked for bonded sulphonic acid groups. The EOF may be reversed for bonded groups containing nitrogen.  相似文献   

12.
An analytical approach of the 32-membered macrocyclic polyamine, 1,5,9,13,17,21,25,29-octaazacyclodotriacontane ([32]ane-N8) was described for the capillary electrochromatographic (CEC) separation of derivatized mono- and disaccharides. The column displayed reversal electroosmotic flow (EOF) at pH below 7.0, while a cathodic EOF was shown at pH above 7.0. The reductive amination of saccharides was carried out with p-aminobenzoic acid. Some parameters that affect the CEC separations were investigated. Several competitive ligands, such as Tris, EDTA and phosphate were also examined for the effect on the performance. We achieved a complete separation of all compounds as well as the excess derivatizing agent by using borate buffer (pH 9.0) in a mode of concentration gradient (60 mM inlet side and 70 mM outlet side). The relative standard deviation of the retention time measured for each sample was less than 4% in six continuous runs, suggesting that the bonded phase along with the gradient formed inside the column was quite stable. With the mixing modes of anion coordination, anion exchange, and shape discrimination, the interaction adequately accomplishes the separation of carbohydrates which are epimers or have different glycosidic linkage, although the electrophoretic migration is also involved in the separation mechanism.  相似文献   

13.
In capillary electrochromatography (CEC) the flow of the mobile phase is generated by electrosmotic means in high electric field. This work compares band spreading measured experimentally in several packed capillaries with electrosmotic flow (EOF) and viscous flow under otherwise identical conditions. The data were fitted to the simplified van Deemter equation for the theoretical plate height, H = A + B/u + Cu, in order to evaluate parameters A and C in each mode of flow in the different columns. The ratio of these two parameters obtained with the same column in microscale HPLC (mu-HPLC) and CEC was used to quantify the attenuation of their contribution to band spreading upon changing from viscous flow (in mu-HPLC) to electrosmotic flow (in CEC). The capillary columns used in this study were packed with stationary phases of different pore sizes as well as retentive properties and measurements were carried out under different mobile phase conditions to examine the effects of the retention factor and buffer concentration. In the CEC mode, the value of both column parameters A and C was invariably by a factor of two to four lower than in the mu-HPLC mode. This effect may be attributed to the peculiarities of the EOF flow profile in the interstitial space and to the generation of intraparticle EOF inside the porous particles of the column packing. Thus, band spreading due to flow maldistribution and mass transfer resistances is significantly lower when the mobile phase flow is driven by voltage as in CEC, rather than by pressure as in mu-HPLC.  相似文献   

14.
The dependency of EOF on the H+-concentration and the related so called pH* value of methanolic electrolytes has been examined with poly(ethylene glycol) (PEG), poly(vinyl alcohol) (PVA) and uncoated capillaries. These results were compared with the pH dependency of EOF of these capillaries using aqueous buffers. In uncoated capillaries the dependency of EOF on the pH(*)-value is very similar for aqueous and methanolic electrolytes. The EOF increases with increasing H+-concentration and pH-hysteresis is observed. In PVA coated capillaries the EOF is strongly reduced over wide pH* or pH ranges for both methanolic electrolytes and aqueous buffers. The EOF in PEG coated capillaries is surprisingly directed to the anode with methanolic electrolytes whereas a reduced cathodic EOF is observed in aqueous electrolytes. The anodic EOF of PEG-coated capillaries in methanolic electrolytes is independent of the pH*-value. The usefulness of PEG- and PVA-coated capillaries for adjusting the EOF in non-aqueous electrolytes for the analysis of isomeric organic acids was demonstrated.  相似文献   

15.
Electroosmotic flow (EOF) was investigated in microfabricated fluidic devices using the current monitoring technique. Current changes ranging from 50 to 130 pA/s were detected. These observations indicate that in microfluidic devices with small reservoir volumes, electrolysis of water influences the fluid transport, giving rise to changes in pH and increase in concentration of ionic species in the fluidic system. As a result of the electrolysis and associated increment in ion concentration, the thickness of the Debye layer and surface potential vary, affecting the overall migration behavior of the solution. The magnitude of EOF and the electrophoretic properties of molecules can no longer be treated as constant/invariant. These temporal anomalies are undesirable during analytical separations and in fluid control applications. A numerical analysis of the impact of the continuous ionic strength increase on the EOF dynamics is presented using well-established conduction and EOF theories. The numerical results are found to be in good agreement with the observed current changes. These results indicate that to improve assay reproducibility, monitoring the electric current is an effective tool to determine whether electrolytic reactions are taking place. Our work also serves to test the numerical accuracy of EOF theories and models.  相似文献   

16.
李菊白  袁敏 《分析化学》1997,25(5):559-562
研究了用涂层柱分离I^-,NO^-2,NO^-3,SCN^-,MoO^2-4等5种具有紫外吸收的阴离了的毛细管电泳方法。采用涂层柱可以有效地抑制电渗流,因此无需在载体电解质溶液中加入电流改性剂。其优越性在于改善了由于电渗流改性剂与体积较大的阴离子发生离子对相互作用所导致的峰形拖尾现象,有助于准确定理。  相似文献   

17.
18.
A novel capillary zone electrophoresis method is described for the determination of taurine in plasma. The method is rapidly executed and is highly selective for taurine as separation is based on the difference in ionisation of this amino acid from that of other amino acids. Following addition of homotaurine as internal standard, plasma proteins were precipitated with acetonitrile and the supernatant was derivatised with fluorescamine in the presence of a borate buffer. Capillary electrophoresis (CE) separations were carried out in reverse polarity mode at 27.5 kV on a Beckman P/ACE MDQ CE instrument, equipped with a diode array detector (DAD) set at 266 nm. The sample tray was cooled to 5 degrees C and separations were carried out at 20 degrees C. The fused-silica capillary was 50.2 cm in length (40.2 cm to detector) with an internal diameter of 75 microm. A capillary conditioning solution was applied daily in order to suppress the residual electroosmotic flow (EOF). The method, which was validated using feline plasma as the blank matrix, was shown to be linear and reproducible over the concentration range 2.5-100 microg/mL. The coefficients of variation (CVs) of replicate analyses were less than 4.5% at 1 microg/mL taurine in feline plasma and less than 3% for 2.5 microg/mL in human plasma. Recovery was estimated at 99.2% with a CV of 4.85%. It has been demonstrated that quantitation in aqueous solution yields similar results to those obtained by interpolation on a plasma calibration curve provided that subtraction for the taurine peak in unspiked plasma is carried out and that a suitable internal standard is employed.  相似文献   

19.
Lee CH  Huang BY  Chen YC  Liu CP  Liu CY 《The Analyst》2011,136(7):1481-1487
A ZrO(2) nanoparticles (ZrO(2)NPs)-coated column was prepared through a sol-gel process using zirconium(iv) oxychloride, which reacted with silanol groups of the fused-silica capillary. The condensation reaction was carried out at 350 °C for 8 h. Electroosmotic flow (EOF) measurements and scanning electron microscopy (SEM) images were used to characterize the ZrO(2)NPs fabricated on the inner wall of the capillary. Below the pI value (pH 5-6), cathodic EOF elucidated that the phosphate buffer adsorbs tightly on the zirconia surface, resulting in a negatively charged surface. In this work, iron-binding proteins, phosphorylated proteins and glycoproteins were selected as the model compounds. The effects of pH, concentration, buffer type and the organic modifier were studied to optimize the separation efficiency. Iron-binding proteins exhibited a retention time for myoglobin (Mb) < hemoglobin (Hb), which corresponded to the binding constants for ZrO(2)NPs. The α- and β-subunit of Hb could be separated in borate buffer (20 mM, pH 9.0) with MeOH (20%, v/v). Greater affinity of α-casein and bovine serum albumin (BSA) for the stationary phase as the pH decreased was found by comparison with that of conalbumin (ConA) and transferrin (Tf). Interestingly, 14 peaks for glycoisoforms of ovalbumin (OVA) were observed using borate buffer (40 mM, pH 9.0). The established method was also applied to the determination of analytes in the egg whites of chicken and duck eggs.  相似文献   

20.
The paper describes the equilibrium dependant reaction for the formation of enamines in a microchemical system utilising electroosmotic flow (EOF) for fluid mobilisation. The authors have shown that the reaction can be carried out without the presence of a Lewis acid catalyst, in addition the enamine intermediate was synthesised at room temperature using mild solvent conditions. A 42% conversion of cyclohexanone into the enamine has been achieved to date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号