首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
A new straightforward method based on cloud‐point extraction has been developed, optimized, and validated for the determination of doxepin in human plasma by high‐performance liquid chromatography separation and UV detection. The nonionic surfactant Triton X‐114 was chosen as the extraction solvent. Chromatography separation was performed on a μBondapakR C18 column (4.6 mm id × 300 mm, 3 μm particle size), which was used for isocratic elution at a detection wavelength of 289 nm. Under the optimum conditions, the linear range of doxepin in human plasma was 0.1–0.9 μg/mL. Also, the detection limit, preconcentration factor, and enrichment factor were 0.08 μg/mL, 50, and 49.0, respectively.  相似文献   

2.
建立快速溶剂萃取–高效液相色谱法测定禽蛋中磺胺嘧啶残留的方法。用单因素和正交试验对禽蛋中磺胺嘧啶的萃取条件进行优化,确定了最佳萃取条件:以甲醇为萃取剂,在130℃循环萃取4次,冲洗体积分数为80%,萃取时间为25 min。色谱柱为Hypersil ODS2柱(4.6 mm×250 mm,5μm),流动相为甲醇–0.5%冰乙酸(25∶75),流量为1.0 m L/min,检测波长为265 nm。磺胺嘧啶的质量浓度在0.025~0.500 mg/m L范围内与色谱峰面积呈良好的线性关系,相关系数r=0.999 5,检出限为0.5μg/kg。加标回收率在83.0%~88.2%之间,测定结果的相对标准偏差为2.2%(n=9)。方法的精密度、准确度和基质效应均符合禽蛋样品检测要求,可用于禽蛋中磺胺嘧啶含量的测定。  相似文献   

3.
建立超高效液相色谱法快速检测虾青素的方法。采用UPLC BEH C_8色谱柱(50 mm×2.1 mm,1.7μm),考察了流动相、流量及柱温对虾青素样品分离的影响,确定了最佳色谱条件:等度洗脱,流动相为甲醇–水(体积比为75∶25),流量为0.5 mL/min,柱温为40℃,检测波长为475 nm。虾青素的质量浓度在0.2~10.0μg/mL范围内与其色谱峰面积呈良好的线性关系,线性相关系数r=0.998 8,检出限(S/N=3)为0.1μg/mL,定量限(S/N=10)为0.2μg/mL。测定结果的相对标准偏差为0.41%(n=6),加标回收率为105.8%~110.3%。该方法快速、简单、可靠、灵敏、重复性好,可用于虾青素有关样品的快速检测。  相似文献   

4.
A rapid and sensitive high‐performance liquid chromatography and electrospray tandem mass spectrometry method was developed and validated for estimation of fulvestrant in rabbit plasma using liquid–liquid extraction. The separation and quantification of fulvestrant were achieved by reverse‐phase chromatography on a Sunfire C18 column (50 × 2.1. i.d., 3.5 μm) with isocratic elution at a flow rate of 300 μL/min using norethistrone as an internal standard from 500 μL plasma sample. The method was validated over the concentration range from 0.092 to 16.937 ng/mL with a lower limit of detection of 0.023 ng/mL. The intra‐day and inter‐day accuracy and precision were within 10%. The recovery was 85 and 90% for fulvestrant and norethistrone respectively. The chromatographic run time was only 2.5 min. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
选取2,3,6-三甲基-β-环糊精(TM-β-CD)作为流动相手性添加剂,建立了采用反相高效液相色谱法分离酸奶及含乳饮料中乳酸异构体的方法。实验采用hypersil ODS2-C18(250×5.0mm,5μm)色谱柱,以0.5mmol/L PH2.5的TM-β-CD(含4.5mmol/L H2SO4)作为流动相,流速为1.0mL/min,紫外检测波长为210nm。实验考察了不同色谱柱、柱平衡时间、手性流动相添加剂浓度及pH值对分离效果的影响,并进一步研究了方法的线性范围、检出限、精密度及回收率。  相似文献   

6.
高效液相色谱串联质谱法测定牛奶中的高氯酸盐   总被引:3,自引:0,他引:3  
建立了高效液相色谱-串联质谱测定牛奶中高氯酸盐的方法.样品经1%乙酸-乙腈(体积比1:4)混合溶液提取,于6 000 r/min离心20 min后,经0.2μ m的尼龙滤膜、On-GuardⅡRP柱、On-GuardⅡAg柱和On-GuardⅡBa柱净化,最大反相性能色谱柱C12(Synergi 4u MAX-RP 8...  相似文献   

7.
A simple and sensitive analytical methodology is developed for rapid screening and quantification of selected estrogenic endocrine disrupting chemicals and bisphenol A from intact milk using fabric phase sorptive extraction in combination with high‐performance liquid chromatography coupled to ultraviolet detection/tandem mass spectrometry. The new approach eliminates protein precipitation and defatting step from the sample preparation workflow. In addition, the error prone and time‐consuming solvent evaporation and sample reconstitution step used as the sample post‐treatment has been eliminated. Parameters with most significant impact on the extraction efficiency of fabric phase sorptive extraction including sorbent chemistry, sample volume, extraction time have been thoroughly studied and optimized. Separation of the selected estrogenic endocrine disrupting chemicals including α‐estradiol, hexestrol, estrone, 17α‐ethinyl estradiol, diethylstilboestrol, and bisphenol A were achieved using a Zorbax Extend‐C18 high‐performance liquid chromatography column (15 cm × 4.6 mm, 5 μm particle size). The limit of detection values obtained in fabric phase sorptive extraction with high‐performance liquid chromatography with ultraviolet detection ranged from 25.0 to 50.0 ng/mL. The method repeatability values were 3.6–13.9 (relative standard deviation, %) and intermediate precision values were 4.6–12.7 (relative standard deviation, %). The fabric phase sorptive extraction method was also coupled to liquid chromatography with tandem mass spectrometry for identifying each endocrine disrupting chemical at 10 ng/mL.  相似文献   

8.
应用现代提取技术超声-微波协同萃取金线莲中的3-吡啶甲醇,采用固相萃取技术对样品进行前处理,高效液相色谱法-电喷雾电离/离子阱质谱法(HPLC-ESI/MS)对提取物中3-吡啶甲醇进行测定和鉴别.色谱条件:Agilent TC-C18色谱柱(5 μm,4.6×250 mm),流动相:甲醇-0.02 mol/L乙酸铵(5∶95,V/V),流速:1 mL/min,检测波长:260 nm.结果表明峰面积与3-吡啶甲醇在浓度1~10 μg/mL范围内呈良好线性关系.回收率在92.0%~96.2%之间,相对标准偏差为2.36%.该法简便、准确、快速.  相似文献   

9.
Cortex Fraxini is an important traditional Chinese medicine. In this work, a rapid and reliable homogenate extraction method was applied for the fast extraction for Cortex Fraxini, and the method was optimized by response surface methodology. Ultra high performance liquid chromatography combined with Fourier transform ion cyclotron resonance mass spectrometry and gas chromatography with mass spectrometry were established for the separation and characterization of the constituents of Cortex Fraxini. Liquid chromatography separation was conducted on a C18 column (150 mm × 2.1 mm, 1.8 μm), and gas chromatography separation was performed on a capillary with a 5% phenyl‐methylpolysiloxane stationary phase (30 m × 0.25 mm × 0.25 mm) by injection of silylated samples. According to the results, 33 chemical compounds were characterized by liquid chromatography with mass spectrometry, and 11 chemical compounds were characterized by gas chromatography with mass spectrometry, and coumarins were the major components characterized by both gas chromatography with mass spectrometry and liquid chromatography with mass spectrometry. The proposed homogenate extraction was an efficient and rapid method, and coumarins, phenylethanoid glycosides, iridoid glycosides, phenylpropanoids, and lignans were the main constituents of Cortex Fraxini. This work laid the foundation for further study of Cortex Fraxini and will be helpful for the rapid extraction and characterization of ingredients in other traditional Chinese medicines.  相似文献   

10.
Online solid phase extraction followed by liquid chromatography coupled to tandem mass spectrometry was used for the determination of 15 fluoroquinolones and one quinolone antibiotic in raw bovine and skimmed commercial milk. Milk samples were partially deproteinized and defatted by 15 min centrifugation and then subjected to online solid phase extraction. Chromatographic separation was achieved in less than 15 min. Identification and quantification of the compounds of interest were performed by selected reaction monitoring, using an electrospray ionization source. Relative recoveries were calculated for raw milk (at 0.5, 1 and 1.5 times the MRL, or assuming 30 ng/mL for non permitted compounds) and skimmed milk (at 30 ng/mL) and ranged between 65% and 123% (raw milk) or 78% and 109% (skimmed milk). Matrix interferences were also assessed and yielded significant suppression and enhancement effects, which, at the time of quantification, were corrected by the use of six isotopically labeled standards. Quality parameters of the method were established, and limits of detection of selected antibiotics in raw milk ranged from 0.01 to 1.93 ng/mL, while in skimmed milk from 0.03 to 4.23 ng/mL. The validation of the method has been carried out according to the requirements set by the 2002/657/EC regulation. Finally, the applicability of the method was tested by analysing 28 milk samples.  相似文献   

11.
The determination of 15 pyrethroids in soil and water samples was carried out by gas chromatography with mass spectrometry. Compounds were extracted from the soil samples (4 g) using solid–liquid extraction and then salting‐out assisted liquid–liquid extraction. The acetonitrile phase obtained (0.8 mL) was used as a dispersant solvent, to which 75 μL of chloroform was added as an extractant solvent, submitting the mixture to dispersive liquid–liquid microextraction. For the analysis of water samples (40 mL), magnetic solid‐phase extraction was performed using nanocomposites of magnetic nanoparticles and multiwalled carbon nanotubes as sorbent material (10 mg). The mixture was shaken for 45 min at room temperature before separation with a magnet and desorption with 3 mL of acetone using ultrasounds for 5 min. The solvent was evaporated and reconstituted with 100 μL acetonitrile before injection. Matrix‐matched calibration is recommended for quantification of soil samples, while water samples can be quantified by standards calibration. The limits of detection were in the range of 0.03–0.5 ng/g (soil) and 0.09–0.24 ng/mL (water), depending on the analyte. The analyzed environmental samples did not contain the studied pyrethroids, at least above the corresponding limits of detection.  相似文献   

12.
A sensitive ultra high performance liquid chromatography with tandem mass spectrometry method was developed for the simultaneous determination of darunavir, ritonavir and tenofovir in human plasma. Sample preparation involved a simple liquid–liquid extraction using 200 μL of human plasma extracted with methyl tert‐butyl ether for three analytes and internal standard. The separation was accomplished on an Acquity UPLC BEH C18 (50 mm x 2.1 mm, 1.7 μm) analytical column using gradient elution of acetonitrile/methanol (80:20, v/v) and 5.0 mM ammonium acetate containing 0.01% formic acid at a flow rate of 0.4 mL/min. The linearity of the method ranged between 20.0 and 12 000 ng/mL for darunavir, 2.0 and 2280 ng/mL for ritonavir, and 14.0 and 1600 ng/mL for tenofovir using 200 μL of plasma. The method was completely validated for its selectivity, sensitivity, linearity, precision and accuracy, recovery, matrix effect, stability, and dilution integrity. The extraction recoveries were consistent and ranged between 79.91 and 90.04% for all three analytes and internal standard. The method exhibited good intra‐day and inter‐day precision between 1.78 and 6.27%. Finally the method was successfully applied for human pharmacokinetic study in eight healthy male volunteers after the oral administration of 600 mg darunavir along with 100 mg ritonavir and 100 mg tenofovir as boosters.  相似文献   

13.
建立QuEChERS-超高效液相色谱串联质谱法(UPLC-MS/MS)快速测定婴幼儿奶粉中5种黄曲霉毒素的方法.样品采用QuEChERS法提取之后,使用分散式固相萃取管(EMR-Lipid dSPE)进行净化,选择ACQUITY BEN C18色谱柱(1.7μm,2.1 mm×100 mm)分离,多反应监测采集模式(M...  相似文献   

14.
A novel stirrer‐liquid/solid microextraction method was developed for the separation and enrichment of trace levels of curcumin, bisdemethoxycurcumin, and demethoxycurcumin in Rhizoma Curcumae Longae, Radix Curcumae, and Rhizoma Curcumae before their analysis by high‐performance liquid chromatography with ultraviolet detection. In the proposed approach, a magnetic stirrer was immersed in decanol to coat its surface completely with decanol, which was used as an extraction platform. The stirrer coated with decanol is not only a power to agitate the sample solution to constantly update the sample on the stirrer surface but also it can adsorb and extract the target analytes. Some effective parameters, including suitable superficial area of stirrer, extraction solvent, sample phase pH, NaCl concentration, stirring rate, extraction time, sample phase volume, were analyzed and selected. Under the optimal conditions, the linearities are 0.0044–2.20 μg/mL, detection limits are 0.3–0.6 ng/mL, and the extraction content per unit length and enrichment factors of the target analytes are 6.24–9.71/mm and 589–917, respectively. Also, the stirrer‐liquid/solid microextraction mechanism for the extraction and enrichment of the target analytes was analyzed and expounded. The results showed that stirrer‐liquid/solid microextraction is a simple, rapid sample pretreatment approach with a high enrichment factor.  相似文献   

15.
A quantitative liquid chromatography coupled with high-resolution mass spectrometry method was developed for the determination of more than one hundred compounds belonging to a variety of veterinary drug classes in bovine milk. Salting out supported liquid extraction (SOSLE), a novel extraction and cleanup technique, was introduced to ensure high extraction efficiency and good sample cleanup. The high salt (ammonium sulfate) concentration in the aqueous donor phase permits supported liquid/liquid extraction (SLE) with a relative polar organic acceptor phase (acetonitrile). This is different from traditional SLE, in which the need for phase separation results in the selection of organic solvents with intermediate polarities (e.g., ethyl acetate or dichloromethane). Hence, SOSLE is more efficient in recovering polar analytes than conventional SLE. SOSLE was also compared to classical approaches like solid phase extraction, QuEChERS and ultra-filtration. The proposed technique resulted in extracts of equal or superior cleanliness and with higher average recoveries than those obtained with QuEChERS or SPE. The recovery (median for all compounds) was 73% for QuEChERS, 83% for SPE and 91% for SOSLE. The most significant improvements were observed for polar analytes (penicillines, quinolones and tetracyclines) which are hardly recovered by QuEChERS. The chromatographic separation and detection was based on an ultra-high-performance liquid chromatography Q-Orbitrap system (Q-Exactive plus). The developed analytical method has been validated (based on the commission decision 2002/957/EC) as required for quantitative veterinary drug methods.  相似文献   

16.
A sensitive and selective gas chromatography with mass spectrometry method was developed for the simultaneous determination of three organophosphorus pesticides, namely, chlorpyrifos, malathion, and diazinon in three different food commodities (milk, apples, and drinking water) employing solid‐phase extraction for sample pretreatment. Pesticide extraction from different sample matrices was carried out on Chromabond C18 cartridges using 3.0 mL of methanol and 3.0 mL of a mixture of dichloromethane/acetonitrile (1:1 v/v) as the eluting solvent. Analysis was carried out by gas chromatography coupled with mass spectrometry using selected‐ion monitoring mode. Good linear relationships were obtained in the range of 0.1–50 μg/L for chlorpyrifos, and 0.05–50 μg/L for both malathion and diazinon pesticides. Good repeatability and recoveries were obtained in the range of 78.54–86.73% for three pesticides under the optimized experimental conditions. The limit of detection ranged from 0.02 to 0.03 μg/L, and the limit of quantification ranged from 0.05 to 0.1 μg/L for all three pesticides. Finally, the developed method was successfully applied for the determination of three targeted pesticides in milk, apples, and drinking water samples each in triplicate. No pesticide was found in apple and milk samples, but chlorpyrifos was found in one drinking water sample below the quantification level.  相似文献   

17.
A fast and sensitive HPLC method for analysis of cosmetic creams for hydroquinone, phenol and six preservatives has been developed. The influence of sample preparation conditions and the composition of the mobile phase and elution mode were investigated to optimize the separation of the eight studied components. Final conditions were 60% methanol and 40% water (v/v) extraction of the cosmetic creams. A C18 column (100 mm × 2.1 mm) was used as the separation column and the mobile phase consisted of methanol and 0.05 mol/L ammonium formate in water (pH=3.0) with gradient elution. The results showed that complete separation of the eight studied components was achieved within 10 min, the linear ranges were 1.0-200 μg/mL for phenol, 0.1-150 μg/mL for sorbic acid, 2.0-200 μg/mL for benzoic acid, 0.5-200 μg/mL for hydroquinone, methyl paraben, ethyl paraben and propyl paraben, butyl paraben, and good linear correlation coefficient (≥0.9997) were obtained, the detection limit was in the range of 0.05-1.0 μg/mL, the average recovery was between 86.5% and 116.3%, and the relative standard deviation (RSD) was less than 5.0% (n=6). The method is easy, fast and sensitive, it can be employed to analyze component residues in cosmetic creams especially in a quality control setting.  相似文献   

18.
A highly sensitive, specific and rapid liquid chromatography–tandem mass spectrometry technique for the quantification of tasimelteon in human plasma has been developed and validated using tasimelteon‐d5 as internal standard. Liquid–liquid extraction technique with ethyl acetate was used for extraction of tasimelteon from the plasma. The chromatographic separation was achieved on an Agilent Zorbax, Eclipse, C18 (4.6 × 50 mm, 5 μm) column using a mobile phase of acetonitrile and 0.02% formic acid buffer (85:15, v/v) with a flow rate of 0.5 mL/min. A detailed method validation was performed as per the United States Food and Drug Administration guidelines. The linear calibration curve was obtained over the concentration range 0.30–299 ng/mL. The API‐4000 liquid chromatography–tandem mass spectrometry was operated under multiple reaction monitoring mode during analysis. The validated method was successfully applied to estimate plasma concentration of tasimelteon after oral administration of a single dose of a 20 mg capsule in healthy volunteers under fasting conditions. The maximum concentration of the drug achieved in the plasma was 314 ± 147 ng/mL and the time at which this concentration was attained was 0.54 ± 0.22 h.  相似文献   

19.
The present work describes a new analytical method for direct immunoaffinity column clean-up of ochratoxin A (OTA) in milk samples followed by determination of the toxin using high-performance liquid chromatography with fluorescence detection (HPLC-FD). Two different immunoaffinity cartridges (IAC) were investigated, and Ochraprep columns were chosen because they showed the best results. An average recovery of 89.8% and a mean RSD of 5.8% for artificially contaminated cow's milk in the range of 5-100 ng/L were attained. The calculated limit of detection (LOD) and limit of quantitation (LOQ) were as low as 0.5 and 5 ng/L, respectively. This new easy and fast method avoids a previous liquid-liquid extraction step and therefore the use of toxic chlorinated solvents. Chromatograms of the final extracts were clean and OTA could be easily detected at a retention time of 8.4 min without interferences. To assess the presence of the toxin in cow's milk eight samples of skimmed and four samples of whole milk were analysed and OTA was not detected over the established detection limit.  相似文献   

20.
A method of microwave-assisted extraction coupled with high-speed counter-current chromatography was established for separation and purification of isopimpinellin, pimpinellin and phellopterin from Toddalia asiatica (L.) Lam. The conditions of MAE including the extraction solvent, size of sample, solid/liquid ratio, extraction temperature and extraction time were optimized by a mono-factor test. That is, 2.0 g dried powder of T. asiatica (L.) Lam of 0.30-0.15 mm size was extracted with 20 mL (solid/liquid ratio of 1:10, g/mL) methanol under 50 °C for 1 min. The crude extract was separated and purified by high-speed counter-current chromatography with hexane-ethyl acetate-methanol-water (5:5:5.5:4.5, v/v/v/v) solvent system. 0.85 mg/g of isopimpinellin, 2.55 mg/g of pimpinellin and 0.95 mg/g of phellopterin were obtained from original sample in one-step within 240 min, the purity determined by high performance liquid chromatography was 95.0%, 99.1% and 96.4%, respectively. Their chemical structures were further identified by mass spectroscopy and nuclear magnetic resonance spectroscopy. The results demonstrated that microwave-assisted extraction coupled with high-speed counter-current chromatography was a feasible, economical and efficient technique for rapid extraction, separation and purification of effective compounds from natural products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号