首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We describe a simple derivatization method to determine aldehydes. This method is based on derivatization with d-cysteine and consecutive liquid chromatography–tandem mass spectrometry (LC–MS/MS). The optimum derivatization conditions of aldehydes with d-cysteine were 10 min at 50 °C and pH 7.0. The formed alkyl thiazolidine-4-carboxylic acid derivatives were directly injected in LC–MS/MS. In the established condition, the method was used to detect eight aldehydes in beverages. The limit of detection (LOD) and limit of quantification (LOQ) of the aldehydes were 0.2–1.9 μg L−1 and 0.7–6.0 μg L−1 and the relative standard deviation was less than 2.0% at concentrations of 0.1 mg L−1 and 1.0 mg L−1 with the exception of octanal. All the beverage samples had detectable levels of methanal (0.033–0.145 mg L−1), ethanal (0.085–2.12 mg L−1), propanal (ND to 0.250 mg L−1), butanal (ND to 0.003 mg L−1), pentanal (ND to 0.471 mg L−1), hexanal (ND to 0.805 mg L−1), heptanal (0.019–3.91 mg L−1) and octanal (0.029–0.118 mg L−1).  相似文献   

2.
Kosaka K  Asami M  Takei K  Akiba M 《Analytical sciences》2011,27(11):1091-1095
An analytical method for determining bromate in drinking water was developed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The (18)O-enriched bromate was used as an internal standard. The limit of quantification (LOQ) of bromate was 0.2 μg/L. The peak of bromate was separated from those of coexisting ions (i.e., chloride, nitrate and sulfate). The relative and absolute recoveries of bromate in two drinking water samples and in a synthesized ion solution (100 mg/L chloride, 10 mg N/L nitrate, and 100 mg/L sulfate) were 99-105 and 94-105%, respectively. Bromate concentrations in 11 drinking water samples determined by LC-MS/MS were <0.2-2.3 μg/L. The results of the present study indicated that the proposed method was suitable for determining bromate concentrations in drinking water without sample pretreatment.  相似文献   

3.
We describe a simple and automatic method to determine nine aldehydes and acetone simultaneously in water. This method is based on derivatization with 2,2,2-trifluoroethylhydrazine (TFEH) and consecutive headspace-solid-phase microextraction and gas chromatography-mass spectrometry. Acetone-d(6) was used as the internal standard. Aldehydes and acetone in water reacted for 30 min at 40°C with TFEH in a headspace vial and the formed TFEH derivatives were simultaneously vaporized and adsorbed on polydimethylsiloxane-divinylbenzene. Under the established condition, the method detection limit was 0.1-0.5 μg/L in 4 mL water and the relative standard deviation was less than 13% at concentrations of 0.25 and 0.05 mg/L. This method was applied to determine aldehydes and acetone in 5 mineral water and 114 surface water samples. All mineral water samples had detectable levels of methanal (24.0-61.8 μg/L), ethanal (57.7-110.9 μg/L), propanal (11.5-11.7 μg/L), butanal, pentanal (3.3-3.4 μg/L) and nonanal (0.3-0.4 μg/L). Methanal and ethanal were also detected in concentration range of 2.7-117.2 and 1.2-11.9 μg/L, respectively, in surface water of 114 monitoring sites in Korea.  相似文献   

4.
液相色谱-串联质谱法测定水产品中麻醉剂MS-222残留   总被引:3,自引:0,他引:3  
建立了液相色谱-串联质谱法测定水产品中麻醉剂3-氨基苯甲酸乙酯甲基磺酸盐(MS-222)残留量的方法。提取液为50%的甲醇及乙酸-乙酸钠缓冲溶液,提取液经C18固相萃取柱净化处理后用液相色谱-串联质谱仪进行测定,外标法定量。流动相为0.5%的甲酸溶液和乙腈(V:V=60:40),流速为0.2 mL/min。该方法的线性范围为0.001~1.0 mg/L,相关系数大于0.999,检出限为1μg/kg,定量限为2μg/kg。加标回收率可以达到80%~110%。  相似文献   

5.
李鹏飞  王燕  张征  童卫杭  吴华  马萍  王静  刘丽宏 《分析化学》2012,40(10):1573-1578
建立高效液相色谱-质谱联用法同时测定人血浆中免疫抑制剂及合并用药12种药物浓度的方法.选用Kromasil-C18色谱柱(50 mm× 4.6 mm×5 μm),以甲醇-乙腈-1mmol/L乙酸铵溶液为流动相,采用梯度洗脱进行分离,样本用甲醇沉淀蛋白后进样,流速:1.1 mL/min;柱温:35℃;进样量:20μL.选用3200QTrap型液相色谱-串联质谱仪的多反应监测(MRM)扫描方式进行检测.12种药物的线性范围为0.2~1000μg/L;定量下限为0.2 μg/L.准确度与精密度结果显示方法日间、日内RSD均小于15%;相对偏差-13%~9.33%,稳定性较好.本方法快速、灵敏,专属性强、重现性好,可用于人体血浆中免疫抑制剂及其常用合并用药共12种药物浓度的测定.  相似文献   

6.
Ultrasound-assisted dispersive liquid-liquid microextraction (UDLLME) and simultaneous derivatization followed by GC-MS was developed for the analysis of four aldehydes including acetaldehyde (ACE), propionaldehyde (PRO), butyraldehyde (BUT) and valeraldehyde (VAL) in water samples. In the proposed method, the aldehydes were derivatized with O-2,3,4,5,6-(pentafluorobenzyl)hydroxylamine (PFBHA) and extracted by UDLLME in aqueous solution simultaneously; finally, the derivatives were analyzed by GC-MS. The experimental parameters were investigated and the method validations were studied. The optimal conditions were: aqueous sample of 5 mL, PFBHA of 50 μL, 1.0 mL ethanol (disperser solvent) containing 20 μL chlorobenzene (extraction solvent), ultrasound time of 2 min and centrifuging time of 3 min at 6000 rpm. The proposed method provided satisfactory precision (RSD 1.8-10.2%), wide linear range (0.8-160 μg/L), good linearity (R(2) 0.9983-0.9993), good relative recovery (85-105%) and low limit of detection (0.16-0.23 μg/L). The proposed method was successfully applied for the analysis of aldehydes in water samples. The experimental results showed that the proposed method was a very simple, rapid, low-cost, sensitive and efficient analytical method for the determination of trace amount of aldehydes in water samples.  相似文献   

7.
Glycidyl fatty acid esters in food by LC-MS/MS: method development   总被引:1,自引:0,他引:1  
An improved method based on liquid chromatography-tandem mass spectrometry (LC-MS/MS) for the analysis of glycidyl fatty acid esters in oils was developed. The method incorporates stable isotope dilution analysis (SIDA) for quantifying the five target analytes: glycidyl esters of palmitic (C16:0), stearic (C18:0), oleic (C18:1), linoleic (C18:2) and linolenic acid (C18:3). For the analysis, 10 mg sample of edible oil or fat is dissolved in acetone, spiked with deuterium labelled analogs of glycidyl esters and purified by a two-step chromatography on C18 and normal silica solid phase extraction (SPE) cartridges using methanol and 5% ethyl acetate in hexane, respectively. If the concentration of analytes is expected to be below 0.5 mg/kg, 0.5 g sample of oil is pre-concentrated first using a silica column. The dried final extract is re-dissolved in 250 μL of a mixture of methanol/isopropanol (1:1, v/v), 15 μL is injected on the analytical C18 LC column and analytes are eluted with 100% methanol. Detection of target glycidyl fatty acid esters is accomplished by LC-MS/MS using positive ion atmospheric pressure chemical ionization operating in Multiple Reaction Monitoring mode monitoring 2 ion transitions for each analyte. The method was tested on replicates of a virgin olive oil which was free of glycidyl esters. The method detection limit was calculated to be in the range of 70-150 μg/kg for each analyte using 10 mg sample and 1-3 μg/kg using 0.5 g sample of oil. Average recoveries of 5 glycidyl esters spiked at 10, 1 and 0.1 mg/kg were in the range 84% to 108%. The major advantage of our method is use of SIDA for all analytes using commercially available internal standards and detection limits that are lower by a factor of 5-10 from published methods when 0.5 g sample of oil is used. Additionally, MS/MS mass chromatograms offer greater specificity than liquid chromatography-mass spectrometry operated in selected ion monitoring mode. The method will be applied to the survey of glycidyl fatty acid esters in food products on the Canadian market.  相似文献   

8.
The influence of natural organic matter on the screening of pharmaceuticals in water was determined by using high resolution liquid chromatography (HRLC) combined with full scan mass spectrometry (MS) techniques like time of flight (ToF) or Orbitrap MS. Water samples containing different amount of natural organic matter (NOM) and residues of a set of 11 pharmaceuticals were analyzed by using Exactive Orbitrap? LC-MS. The samples were screened for residues of pharmaceuticals belonging to different classes like benzimidazoles, macrolides, penicillins, quinolones, sulfonamides, tetracyclines, tranquillizers, non-steroidal anti-inflammatory drugs (NSAIDs), anti-epileptics and lipid regulators. The method characteristics were established over a concentration range of 0.1-500 μg L(-1). The 11 pharmaceuticals were added to two effluent and two influent water samples. The NOM concentration within the samples ranged from 2 to 8 mg L(-1) of dissolved organic carbon. The HRLC-Exactive Orbitrap? LC-MS system was set at a resolution of 50,000 (FWHM) and this selection was found sufficient for the detection of the list of pharmaceuticals. With this resolution setting, accurate mass measurements with errors below 2 ppm were found, despite of the NOM concentration of the different types of water samples. The linearities were acceptable with correlation coefficients greater than 0.95 for 30 of the 51 measured linearities. The limit of detection varies between 0.1 μg L(-1)and 100 μg L(-1). It was demonstrated that sensitivity could be affected by matrix constituents in both directions of signal reduction or enhancement. Finally it was concluded that with direct shoot method used (no sample pretreatment) all compounds, were detected but LODs depend on matrix-analyte-concentration combination. No direct relation was observed between NOM concentration and method characteristics. For accurate quantification the use of internal standards and/or sample clean-up is necessary. The direct shoot method is only applicable for qualitative screening purposes. The use of full scan MS makes it possible to search for unknown contaminants. With the use of adequate software and a database containing more than 50,000 entries a tool is available to search for unknowns.  相似文献   

9.
Zhang Y  Ma X  Lü P  Li H  Lu X 《色谱》2012,30(1):95-98
建立了小型家用电器塑料部件中双酚A的液相色谱-串联质谱(LC-MS/MS)检测方法。采用快速溶剂萃取仪对样品进行萃取,以Sep-Pak C18固相萃取柱净化,甲醇-水(含有0.05%氨水)混合液作为流动相,负离子模式下进行MS/MS检测。结果表明: 该方法在5~100 μg/L范围内线性关系良好,相关系数(r2)为0.9991。在10、25和75 μg/kg 3个添加水平下,双酚A的平均回收率为95.2%~109.7%,相对标准偏差均小于3.8%,检出限为10 μg/kg。该方法操作简便,灵敏度高,适用于家用电器塑料部件中双酚A的残留分析。  相似文献   

10.
Headspace solid phase microextraction (HS-SPME) in-situ supercritical fluid extraction (SFE) was investigated for the determination of trace amounts of perfluorocarboxylic acids (PFCAs) in sediments. Quantitation was performed by using gas chromatography coupled to negative chemical ionization-tandem mass spectrometry (GC-NCI-MS/MS). The optimum conditions of HS-SPME following SFE were obtained using 500 μL n-butanol as a derivatization reagent in supercritical carbon dioxide with static extraction for 10 min, then dynamic extraction for 20 min at 30 MPa and 70 °C and simultaneous collected with 100 μm film thickness PDMS fiber. The linear range of proposed method was from 5 to 5000 ng g(-1), with limit of detection ranging from 0.39 to 0.54 ng g(-1) and limit of quantitation ranging from 1.30 to 1.80 ng g(-1). The developed method was successfully applied to analyze PFCAs in sediments from rivers and beach near industrial areas. The concentrations of PFCAs determined are from 282 to 4473 ng g(-1).  相似文献   

11.
建立了高效液相色谱(HPLC)测定仲丁胺的分析方法。试样采用全自动凯氏定氮仪蒸馏,蒸馏液经碱中和,以9-氯甲酸芴甲酯(FMOC)为衍生剂在碱性条件下衍生,衍生产物经C18柱分离,紫外检测器(265nm)检测。实验考察了衍生剂浓度、硼酸盐缓冲溶液的p H值、反应温度与时间等因素对衍生反应的影响,结果表明,最优的衍生剂浓度为0.50 g/L,缓冲溶液p H值为8.0,反应温度为室温,反应时间为15 min。在此条件下,仲丁胺在0.001~1.000 mg/L浓度范围内与其响应信号呈良好的线性关系,相关系数为0.999 8,加标回收率为82.4%~95.2%,相对标准偏差为1.3%~6.8%,方法检出限为0.1μg/kg,定量下限为0.5μg/kg。该方法快速、简便、安全、灵敏度高、重现性好,可用于果蔬中仲丁胺残留的测定。  相似文献   

12.
建立了直接进样测定生活饮用水及其水源水中5种苯胺类化合物(苯胺、3-硝基苯胺、4-硝基苯胺、2,6-二氯-4-硝基苯胺和六硝基二苯胺)的液相色谱-串联质谱法。水样经0.22μm 聚醚砜滤膜过滤后直接进样,目标化合物在 HSS T3色谱柱上经梯度洗脱,于4 min 完成分离,多反应监测模式检测。5种苯胺类化合物在各自线性范围内线性良好,相关系数 R≥0.995。方法的检出限为0.773~1.88μg/ L(S/ N =3),定量限为2.58~6.27μg/ L(S/ N=10);峰面积的日内和日间相对标准偏差(RSD)分别为0.8%~1.9%和3.3%~4.9%;样品加标回收率为84.1%~105.0%,加标样品的 RSD 为1.0%~3.1%。应用本方法对35份水样进行了分析。结果表明,本方法准确、灵敏、快速,适用于生活饮用水及其水源水的常规分析,可为苯胺类化合物的污染评价提供技术支持。  相似文献   

13.
以邻苯二甲醛(OPA)和3-巯基丙酸为衍生试剂,建立了柱前衍生高效液相色谱(HPLC)测定曲格列汀中(R)-3-氨基哌啶含量的分析方法.(R)-3-氨基哌啶与衍生剂在碱性(pH 10.5)条件下于室温反应30s,进行柱前衍生,并利用高效液相色谱-质谱对衍生产物进行定性分析.采用YMC-Triart C18色谱柱(150...  相似文献   

14.
建立了专属性更高的固相萃取(SPE)-高效液相三重四级杆质谱(LC-MS/MS)测定人血浆中安妥沙星的方法。血浆样品经弱阴离子固相萃取柱净化后,洗脱吹干,复溶后进行检测。采用Agilent Eclipse plusC8色谱柱,流动相为10mmol/L乙酸铵(pH 3.5)-甲醇(35∶65,V/V),流速为0.35mL/min,选择离子检测,线性范围为7.0~5080μg/L,R>0.996,检出限0.5μg/L,绝对回收率>77.6%,日间相对标准偏差<7.9%。将本方法用于受试者给药后的血药浓度测定,结果满意。  相似文献   

15.
建立丹磺酰氯柱前衍生-超高效液相色谱-串联质谱法测定人体尿样中环己胺的方法。冷冻样品经解冻、离心后,用丹磺酰氯衍生,固相萃取小柱净化。目标化合物采用 Waters ACQUITY CSHTM C18色谱柱(50 mm×2.1 mm,1.7μm)分离,以甲醇和0.002 mol/L乙酸铵溶液为流动相梯度洗脱,采用电喷雾离子源电离、正离子多反应监测模式质谱检测。环己胺在2.5~200μg/L浓度范围内有较好的线性关系,相关系数大于0.999,回收率为98.7%~102.3%,精密度为3.1%~5.2%,检出限和定量限分别为1.0和3.0μg/L。结果表明,本方法操作简单、准确可靠,可适用于人体尿液中环己胺的定量分析。应用本方法测定200份学生尿液样品,环己胺检出率为34.5%。  相似文献   

16.
建立了蔬菜和水果中腈吡螨酯残留量的超高效液相色谱-串联质谱(UPLC-MS/MS)分析方法。样品经乙腈均质提取,混合使用乙二胺-N-丙基硅烷(PSA)和C18两种基质分散净化剂净化,净化液过膜后直接进行UPLC-MS/MS检测。通过考察腈吡螨酯在不同果蔬样品中的基质效应发现,采用UPLC-MS/MS检测蔬菜和水果中腈吡螨酯残留量时,腈吡螨酯在不同种类样品中存在不同程度的基质减弱效应,采用空白基质溶液稀释标准建立校正的标准曲线外标法定量以消除基质效应。结果表明,腈吡螨酯在0.05~10μg/L浓度范围内具有良好的线性关系,相关系数不低于0.999 6。在0.000 05~2 mg/kg范围内进行加标回收率实验,平均回收率为81.1%~99.3%,相对标准偏差为4.7%~9.3%,方法的定量下限为0.043μg/kg,检出限为0.013μg/kg。  相似文献   

17.
高效液相色谱串联质谱法测定牛奶中的高氯酸盐   总被引:3,自引:0,他引:3  
建立了高效液相色谱-串联质谱测定牛奶中高氯酸盐的方法.样品经1%乙酸-乙腈(体积比1:4)混合溶液提取,于6 000 r/min离心20 min后,经0.2μ m的尼龙滤膜、On-GuardⅡRP柱、On-GuardⅡAg柱和On-GuardⅡBa柱净化,最大反相性能色谱柱C12(Synergi 4u MAX-RP 8...  相似文献   

18.
This work reports the development of a simple method for the quantitative determination of aromatic and aliphatic low-molecular-mass aldehydes (LMMAs) as disinfection by-products (DBPs) in indoor swimming pool waters after chlorination with a simplified SPE sample treatment. The method is based on the continuous in situ derivatization/preconcentration of the aldehydes with 2,4-dinitrophenylhydrazine (DNPH) on a Lichrolut EN column in the presence of β-CD. After elution, the 2,4-dinitrophenylhydrazine derivatives were separated on an RP-C(18) analytical column using gradient of ACN-water at 60-80%. The optimized sample treatment described here allowed the direct analysis of large volumes of water in order to improve the sensitivity of the method; LODs in the 60-120 ng/L range were achieved for aromatic LMMAs by using a volume of 50 mL of water, precision being 7.5% or better at a concentration level of 5 μg/L. These results indicate that the ensuing method is a useful choice for the determination of LMMAs in water samples that provides better results than reported LC alternatives in terms of the LOD (except for MS/MS detection), sample requirements for analysis and cost.  相似文献   

19.
The potential of CZE with LIF detection in the separation and determination of low‐molecular mass aldehydes involving precolumn derivatization with fluorescein 5‐thiosemicarbazide was investigated. Different variables that affect derivatization (pH, fluorescein 5‐thiosemicarbazide concentration, time and temperature) and separation (pH and concentration of the BGE, kind and concentration of surfactants at levels higher and lower than CMC, and applied voltage) were studied. The separation was conducted within 16 min by using borate buffer (60 mM; pH 10) with 10 μM polyethylene glycol tert‐octylphenyl ether as modifier. Good linearity relationships (correlation coefficients ranged from 0.9978 to 0.9994 for aldehydes) were obtained between the peak areas and concentration of the analytes (0.5–100 μg/L). The LODs for aldehydes were achieved at submicrogram‐per‐liter level (0.15–0.35 μg/L), which indicated that the proposed method surpassed other electrophoretric alternatives in terms of LOD, in many cases even at ca. 1000‐fold. The inter‐day precision (RSD, %) of the aldehydes ranged from 5.2 to 8.3%. Finally, the method was successfully applied to bottled drinking‐water samples, and the aldehydes were readily detected at 0.6–4.4 μg/L levels with average recoveries ranging from 99.1 to 103.5%.  相似文献   

20.
Furaneol is an important aroma compound. It is very difficult to extract furaneol from food matrices and separate it on a gas chromatography column due to its high polarity and instability. A new quantitative method was developed to quantify furaneol in aqueous samples by the use of derivatization/solid phase microextraction (SPME) coupled with gas chromatography/mass spectrometry (GC/MS). The derivatization was carried out by reacting pentafluorobenzyl bromide with furaneol in basic solutions at elevated temperatures. The derivative was stable and less polar so that SPME-GC/MS could be applied for extraction, separation and detection. The automated analytical method had a limit of detection (LOD) of 0.5 ng mL(-1), a limit of quantification (LOQ) of 2 ng mL(-1), a repeatability of 9.5%, and a linear range from 2 to 500 ng mL(-1). The method was applied to analyze fruit samples. And it was found that the concentrations of furaneol in tomato ranged from 95 to 173 μg kg(-1), in strawberries ranged from 1663 to 4852 μg kg(-1). The results were verified with a LC procedure. To facilitate analytical method development, some physico-chemical parameters for furaneol were determined in this work. Its solubility in water was determined as 0.315 g mL(-1) (25°C). Its LogD in water and LogP in 0.1 M phosphate buffer were -0.133 and 0.95 (20 °C), respectively. Its pKa was 8.56 (20 °C).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号