首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We show that the combination of spin-orbit coupling with a Zeeman field or strong interactions may lead to the formation of a helical electron liquid in single-channel quantum wires, with spin and velocity perfectly correlated. We argue that zero-energy Majorana bound states are formed in various situations when such wires are situated in proximity to a conventional s-wave superconductor. This occurs when the external magnetic field, the superconducting gap, or, most simply, the chemical potential vary along the wire. These Majorana states do not require the presence of a vortex in the system. Experimental consequences of the helical liquid and the Majorana states are also discussed.  相似文献   

2.
Topological insulators are emergent states of quantum matter that are gapped in the bulk with timereversal symmetry-preserved gapless edge/surface states, adiabatically distinct from conventional materials. By proximity to various magnets and superconductors, topological insulators show novel physics at the interfaces, which give rise to two new areas named topological spintronics and topological quantum computation. Effects in the former such as the spin torques, spin-charge conversion, topological antiferromagnetic spintronics, and skyrmions realized in topological systems will be addressed. In the latter, a superconducting pairing gap leads to a state that supports Majorana fermions states, which may provide a new path for realizing topological quantum computation. Various signatures of Majorana zero modes/edge mode in topological superconductors will be discussed. The review ends by outlooks and potential applications of topological insulators. Topological superconductors that are fabricated using topological insulators with superconductors have a full pairing gap in the bulk and gapless surface states consisting of Majorana fermions. The theory of topological superconductors is reviewed, in close analogy to the theory of topological insulators.  相似文献   

3.
《Physics letters. A》2020,384(27):126694
We consider the edge of a superconducting topological insulator with the impurity in the presence of the Zeeman field. We analytically prove that in the trivial phase two Andreev bound states (ABSs) arise with energies moving from the superconducting gap edges to zero forming two Majorana-like bound states, as the impurity strength varies from 0 to ±2. When the Zeeman field is locally perturbed, ABSs arise both in the trivial and topological phases, but in the topological phase ABSs with energy near the gap edges cannot transform into Majorana bound states and vice versa.  相似文献   

4.
The quantum phase transition between topological and nontopological insulators or between fully gapped superfluids/superconductors can occur without closing the gap. We consider the evolution of the Majorana edge states on the surface of topological superconductor during transition to the topologically trivial superconductor on example of non-interacting Hamiltonian describing spin-triplet superfluid 3He-B. In conventional situation when the gap is nullified at the transition, the spectrum of Majorana fermions shrinks and vanishes after the transition to the trivial state. If the topological transition occurs without the gap closing, the Majorana fermion spectrum disappears by escaping to ultraviolet, where the Green’s function approaches zero. This demonstrates the close connection between the topological transition without closing the gap and zeroes in the Green’s function. Similar connection takes place in interacting systems where zeroes may occur due to interaction.  相似文献   

5.
FS Nogueira  I Eremin 《J Phys Condens Matter》2012,24(32):325701, 1-325701,10
We investigate the Josephson effect for a setup with two lattice quantum wires featuring Majorana zero energy boundary modes at the tunnel junction. In the weak-coupling regime, the exact solution reproduces the perturbative result for the energy containing a contribution ~ ± cos(?/2) relative to the tunneling of paired Majorana fermions. As the tunnel amplitude g grows relative to the hopping amplitude w, the gap between the energy levels gradually diminishes until it closes completely at the critical value gc [Formula: see text]. At this point the Josephson energies have the principal values [Formula: see text], where m =- 1,0,1 and σ =± 1, a result not following from perturbation theory. It represents a transparent regime where three Bogoliubov states merge, leading to additional degeneracies of the topologically nontrivial ground state with an odd number of Majorana fermions at the end of each wire. We also obtain the exact tunnel currents for a fixed parity of the eigenstates. The Josephson current shows the characteristic 4π periodicity expected for a topological Josephson effect. We discuss the additional features of the current associated with a closure of the energy gap between the energy levels.  相似文献   

6.
We suggest in this article the nuclear magnetic resonance (NMR) method of observation and investigations of Majorana fermions at the edge of Topological Insulator, superfluid 3He-B. The Majorana fermions form the remarkable quantum state of condensed matter where particle-like and antiparticle (hole-like) excitations are indistinguishable. They have been observed recently by deviation of the temperature dependence of the superfluid 3He-B heat capacity from the well-known exponential law for Bogoliubov quasiparticles at the world limit of ultra-low temperatures. The experimental data are well described by adding the heat capacity of Majorana quasiparticles’ edge states with zero energy gap. We report here the results of the similar experiments with extended temperature range down to 125 µK. The possible way to detect these states by means of NMR is also discussed.  相似文献   

7.
A time-reversal invariant topological superconductivity is suggested to be realized in a quasi-one-dimensional structure on a plane, which is fabricated by filling the superconducting materials into the periodic channel of dielectric matrices like zeolite and asbestos under high pressure. The topological superconducting phase sets up in the presence of large spin–orbit interactions when intra-wire s-wave and inter-wire d-wave pairings take place. Kramers pairs of Majorana bound states emerge at the edges of each wire. We analyze effects of the Zeeman magnetic field on Majorana zero-energy states. In-plane magnetic field was shown to make asymmetric the energy dispersion, nevertheless Majorana fermions survive due to protection of a particle–hole symmetry. Tunneling of Majorana quasiparticle from the end of one wire to the nearest-neighboring one yields edge fractional Josephson current with 4π-periodicity.  相似文献   

8.
O Y  N R 《J Phys Condens Matter》2012,24(34):343201
Superfluid (3)He is an intensively investigated and well characterized p-wave superfluid. In the bulk Balian-Werthamer state, which is commonly called the (3)He B phase, the superfluid gap is opened isotropically but near a flat boundary such as a wall of a container it can harbor interesting quasi-particle states inside the gap. These states are called surface Andreev bound states, and have not been experimentally explored in detail. Transverse acoustic impedance measurement has revealed their existence and provided spectroscopic details of the dispersion of the bound states. Recent theoretical arguments claim that the surface Andreev bound states of the superfluid (3)He B phase can be recognized as the edge states of the topological superfluid and be regarded as a Majorana fermion, a fancy particle which has not been confirmed in elementary particle physics. In this review, we present up-to-date knowledge on the surface Andreev bound states of the (3)He B phase revealed by acoustic spectroscopy and the possible realization of a Majorana fermion, along with related studies on this topic.  相似文献   

9.
We propose a method to coherently transfer quantum information, and to create entanglement, between topological qubits and conventional spin qubits. Our suggestion uses gated control to transfer an electron (spin qubit) between a quantum dot and edge Majorana modes in adjacent topological superconductors. Because of the spin polarization of the Majorana modes, the electron transfer translates spin superposition states into superposition states of the Majorana system, and vice versa. Furthermore, we show how a topological superconductor can be used to facilitate long-distance quantum information transfer and entanglement between spatially separated spin qubits.  相似文献   

10.
The visualization of chiral p-wave superfluidity in Fermi gases near p-wave Feshbach resonances is theoretically examined. It is proposed that the superfluidity becomes detectable in the entire BCS-BEC regimes through (i) vortex visualization by the density depletion inside the vortex core and (ii) intrinsic angular momentum in vortex-free states. It is revealed that both (i) and (ii) are closely connected with the Majorana zero energy mode of the vortex core and the edge mode, which survive until the strong coupling BCS regime is approached from the weak coupling limit and vanish in the Bose-Einstein condensation regime.  相似文献   

11.
We study Andreev bound states (ABS) and the resulting charge transport of a Rashba superconductor (RSC) where two-dimensional semiconductor (2DSM) heterostructures are sandwiched by spin-singlet s-wave superconductor and ferromagnet insulator. ABS becomes a chiral Majorana edge mode in the topological phase (TP). We clarify two types of quantum criticality about the topological change of ABS near a quantum critical point (QCP), whether or not ABS exists at QCP. In the former type, ABS has an energy gap and does not cross at zero energy in the nontopological phase. These complex properties can be detected by tunneling conductance between normal metal-RSC junctions.  相似文献   

12.
We study topological properties of one-dimensional nonlinear bichromatic superlattices and unveil the effect of nonlinearity on topological states. We find the existence of nontrivial edge solitions, which distribute on the boundaries of the lattice with their chemical potential located in the linear gap regime and are sensitive to the phase parameter of the superlattice potential. We further demonstrate that the topological property of the nonlinear Bloch bands can be characterized by topological Chern numbers defined in the extended two-dimensional parameter space. In addition, we discuss that the composition relations between the nolinear Bloch waves and gap solitions for the nonlinear superlattices. The stabilities of edge solitons are also studied.  相似文献   

13.
Spin-filtered edge states and quantum Hall effect in graphene   总被引:1,自引:0,他引:1  
Electron edge states in graphene in the quantum Hall effect regime can carry both charge and spin. We show that spin splitting of the zeroth Landau level gives rise to counterpropagating modes with opposite spin polarization. These chiral spin modes lead to a rich variety of spin current states, depending on the spin-flip rate. A method to control the latter locally is proposed. We estimate Zeeman spin splitting enhanced by exchange, and obtain a spin gap of a few hundred Kelvin.  相似文献   

14.
Mao L  Shi J  Niu Q  Zhang C 《Physical review letters》2011,106(15):157003
We show that a chiral (f+if)-wave superconducting pairing may be induced in the lowest heavy hole band of a hole-doped semiconductor thin film through proximity contact with an s-wave superconductor. The chirality of the pairing originates from the 3π Berry phase accumulated for a heavy hole moving along a close path on the Fermi surface. There exist three chiral gapless Majorana edge states, in consistence with the chiral (f+if)-wave pairing. We show the existence of zero-energy Majorana fermions in vortices in the semiconductor-superconductor heterostructure by solving the Bogoliubov-de Gennes equations numerically as well as analytically in the strong confinement limit.  相似文献   

15.
We study the appearance of discrete gap solitons in a nonlinear Schrödinger model with a periodic on-site potential that possesses a gap evacuated of plane-wave solutions in the linear limit. For finite lattices supporting an anti-phase (q=π/2) gap edge phonon as an anharmonic standing wave in the nonlinear regime, gap solitons are numerically found to emerge via pitchfork bifurcations from the gap edge. Analytically, modulational instabilities between pairs of bifurcation points on this “nonlinear gap boundary” are found in terms of critical gap widths, turning to zero in the infinite-size limit, which are associated with the birth of the localized soliton as well as discrete multisolitons in the gap. Such tunable instabilities can be of relevance in exciting soliton states in modulated arrays of nonlinear optical waveguides or Bose-Einstein condensates in periodic potentials. For lattices whose gap edge phonon only asymptotically approaches the anti-phase solution, the nonlinear gap boundary splits in a bifurcation scenario leading to the birth of the discrete gap soliton as a continuable orbit to the gap edge in the linear limit. The instability-induced dynamics of the localized soliton in the gap regime is found to thermalize according to the Gibbsian equilibrium distribution, while the spontaneous formation of persisting intrinsically localized modes (discrete breathers) from the extended out-gap soliton reveals a phase transition of the solution.  相似文献   

16.
We study the entanglement in various fully gapped complex paired states of fermions in two dimensions, focusing on the entanglement spectrum (ES), and using the Bardeen-Cooper-Schrieffer (BCS) form of the ground-state wave function on a cylinder. Certain forms of the pairing functions allow a simple and explicit exact solution for the ES. In the weak-pairing phase of ?-wave paired spinless fermions (? odd), the universal low-lying part of the ES consists of |?| chiral Majorana fermion modes [or 2|?| (? even) for spin-singlet states]. For |?|>1, the pseudoenergies of the modes are split in general, but for all ? there is a zero-pseudoenergy mode at a zero wave vector if the number of modes is odd. This ES agrees with the perturbed conformal field theory of the edge excitations. For more general BCS states, we show how the entanglement gap diverges as a model pairing function is approached.  相似文献   

17.
We use the SU(2) slave fermion approach to study a tetrahedral spin 1/2 chain, which is a one-dimensional generalization of the two dimensional Kitaev honeycomb model. Using the mean field theory, coupled with a gauge fixing procedure to implement the single occupancy constraint, we obtain the phase diagram of the model. We then show that it matches the exact results obtained earlier using the Majorana fermion representation. We also compute the spin-spin correlation in the gapless phase and show that it is a spin liquid. Finally, we map the one-dimensional model in terms of the slave fermions to the model of 1D p-wave superconducting model with complex parameters and show that the parameters of our model fall in the topological trivial regime and hence does not have edge Majorana modes.  相似文献   

18.
We show that the interplay between spin and charge fluctuations in Sr?RuO? leads unequivocally to triplet pairing which has a hidden quasi-one-dimensional character. The resulting superconducting state spontaneously breaks time-reversal symmetry and is of the form Δ ~(p(x)+ip(y))z(^) with sharp gap minima and a d vector that is only weakly pinned. The superconductor lacks robust chiral Majorana fermion modes along the boundary. The absence of topologically protected edge modes could explain the surprising absence of experimentally detectable edge currents in this system.  相似文献   

19.
We study a one-dimensional wire with strong Rashba and Dresselhaus spin-orbit coupling (SOC), which supports Majorana fermions when subject to a Zeeman magnetic field and in the proximity of a superconductor. Using both analytical and numerical techniques we calculate the electronic spin texture of the Majorana end states. We find that the spin polarization of these states depends on the relative magnitude of the Rashba and Dresselhaus SOC components. Moreover, we define and calculate a local "Majorana polarization" and "Majorana density" and argue that they can be used as order parameters to characterize the topological transition between the trivial system and the system exhibiting Majorana bound modes. We find that the local Majorana polarization is correlated to the transverse spin polarization, and we propose to test the presence of Majorana fermions in a 1D system by a spin-polarized density of states measurement.  相似文献   

20.
Quantum spin Hall effect in graphene   总被引:1,自引:0,他引:1  
We study the effects of spin orbit interactions on the low energy electronic structure of a single plane of graphene. We find that in an experimentally accessible low temperature regime the symmetry allowed spin orbit potential converts graphene from an ideal two-dimensional semimetallic state to a quantum spin Hall insulator. This novel electronic state of matter is gapped in the bulk and supports the transport of spin and charge in gapless edge states that propagate at the sample boundaries. The edge states are nonchiral, but they are insensitive to disorder because their directionality is correlated with spin. The spin and charge conductances in these edge states are calculated and the effects of temperature, chemical potential, Rashba coupling, disorder, and symmetry breaking fields are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号