首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aggregation behavior and the interaction of four mixed systems for a cationic fluorocarbon surfactant, diethanolheptadecafluoro-2-undecanolmethylammonium chloride (DEFUMACl), mixing with cationic hydrocarbon surfactants, alkyltrimethylammonium chloride, CnTACl (n=12, 14, 16, and 18; where n=12 is DTACl, n=14 is TTACl, n=16 is CTACl, and n=18 is OTACl), were studied by 1H and 19F NMR in more detail. The results of 19F NMR measurements strongly indicate that in the three mixed systems of DEFUMACl/DTACl, DEFUMACl/TTACl, and DEFUMACl/CTACl at different molar fractions of fluorocarbon surfactant (alphaF=(cDEFUMACl/cDEFUMACl+cCnTACl)), with an increase of the total concentration of fluorocarbon and hydrocarbon surfactants (cT=cF+cH), the mixed micelles at the first break point and the individual DEFUMACl micelles at the second break point form. However, three different types of micelles were determined in DEFUMACl/OTACl mixtures by 19F NMR measurements, OTACl-rich and DEFUMACl-rich mixed micelles and individual DEFUMACl micelles, respectively. The chemical shifts of proton Deltadelta (1H) for -CH3 in the mixed systems of DEFUMACl/CnTACl (n=12, 14, 16, and 18) have different variation trends from the 19F NMR measurements. For the two systems of DEFUACl/DTACl and DEFUMACl/TTACl, the mixed micelles form at the first break point. At the second break point, for lower alpha F values the DTACl-rich and TTACl-rich mixed micelles form with a strong downfield shift and for higher alpha F values DEFUMACl-rich mixed micelles form with a strong upfield. For the other two systems of DEFUMACl/CTACl and DEFUMAC/OTACl, the chemical shifts of proton Deltadelta (1H) of -CH3 increase with an increase of the total concentration of DEFUMACl/CTACl or OTACl, and mixed CH- and CF-surfactant micelles form. At higher total concentration, the greater effect of fluorinated chains of DEFUMACl on CH-chains was obvious, resulting in the strong upfield chemical shifts. In cationic fluorocarbon and hydrocarbon surfactant mixtures, the different kinds of micelles observed by 19F and 1H NMR measurements could be caused by the increase in alkyl chain length of hydrocarbon surfactants with different critical micelle concentrations. Combining two theoretical models for mixing, for the four different chain-length hydrocarbon surfactants studied, one can conclude that the two components of mixtures interact with each other and form mixed micelles in two completely different ways according to their molecular properties and cmc values in a certain range of total concentrations. One is close to an ideal mixing case with the formation of one type of mixed micelles, such as the DEFUMACl/DTACl and DEFUMACl/TTACl systems. The other is a demixing case with the formation of two types of micelles, i.e., fluorocarbon-rich and hydrocarbon-rich mixed micelles, such as DEFUMACl/CTACl and DEFUMACl/OTACl systems. However, as the total concentrations of the mixed systems are high enough, the four systems tend to demix and to form individual micelles of corresponding components due to the initial respective interaction between fluorocarbon and hydrocarbon chains. That is to say, at high total concentration, the individual DEFUMACl micelles in all four systems could form. These results may be primarily directed toward acquiring an understanding of the mechanism of CF-CH mixtures in aqueous solution and secondarily directed toward providing more detailed information on nonideal mixing.  相似文献   

2.
3.
Miscibility of hexanol and dodecylammonium chloride (DAC) in adsorbed films and micelles was investigated by evaluating the compositions of the adsorbed films and micelles from surface tension measurements. Judging from the phase diagram of adsorption, negative azeotropy of adsorption was observed for the mixed adsorption of hexanol and DAC at water/air interfaces. The nonideal mixing in the adsorbed film was clarified using excess functions of adsorption. Interaction between hexanol and DAC in the adsorbed film was compared with that between other alkanols and surfactants. It was found that the range of azeotropes is narrower for the hexanol-DAC mixture than for the heptanol-octylsulfinylethanol mixture, because interaction between different species in an adsorbed film is weaker in the former than in the latter.  相似文献   

4.
NMR self-diffusion coefficient measurements have been used to study the properties of polyethylene glycol (23) lauryl ether (Brij-35) with cetyltrimethylammonium bromide (CTAB) in the mixed aqueous solutions with different mole fractions of CTAB. By fitting the self-diffusion coefficients to the two-state exchange model, the critical micelle concentrations of the two solutes in the mixed solutions (cmc*1 and cmc*2) were obtained. The critical mixed micelle concentrations (cmc*) were then evaluated by the sum of cmc*1 and cmc*2, which are in good agreement with the results measured by the surface tension method. The cmc* values are lower than those of the ideal case of mixing, which indicates that the behavior of the CTAB/Brij-35 system is nonideal. Moderate interactions between CTAB and Brij-35 in their mixtures can be deduced from the interaction parameters (betaM) based on the cmc* obtained by the NMR self-diffusion method. The compositions (x1) of the mixed micelles at different total surfactant concentrations were also evaluated. By using these results, a possible mechanism of mixed micellar formation and a picture of the formation of nonsimultaneous CTAB/Brij-35 binary mixed micelle were proposed. In contrast to the case of CTAB/TX-100 system, Brij-35 molecules have a tendency to form micelles first at any mole fraction of CTAB. The mixed micellar self-diffusion coefficients (Dm) increase slightly at lower CTAB molar ratios, and then speed up with increasing CTAB mole fraction.  相似文献   

5.
The nonideal adsorbed solution (NAS) theory has been formally extended to adsorption at the air/water interface from aqueous mixtures of ionic surfactants, explicitly accounting for the surface potential of the adsorbed monolayer with the Gouy-Chapman theory. This new ionic NAS (iNAS) theory is thermodynamically consistent and, when coupled to a micellization model, is valid for concentrations below and above the mixed cmc. Counterion binding is incorporated into the model using two fractional binding parameters, beta(sigma) for the adsorbed monolayer and beta(m) for the micelles. The regular solution theory is used to model the nonideal interactions within the adsorbed monolayer and within the mixed micelles. New tension data for an equimolar mixture of sodium dodecyl sulfate (SDS) and sodium dodecyl sulfonate (SDSn) at two salinities fit this model well when mixing is ideal. The total surface densities, the surface compositions, and the surface potentials for the mixed monolayers are calculated. When there is no added salt, at total surfactant concentrations below the mixed cmc, the adsorbed monolayer is enriched in SDSn, but at total concentrations at and above the mixed cmc, the adsorbed monolayer is nearly an equimolar mixture. In the presence of 100 mM NaCl, the adsorbed monolayer is nearly an equimolar mixture, independent of the total surfactant concentration.  相似文献   

6.
The aqueous mixed system decyltrimethylammonium bromide (C(10)TAB)-hexadecyltrimethylammonium bromide (C(16)TAB) was studied by conductivity, ion-selective electrodes, surface tension, and fluorescence spectroscopy techniques. The mixture critical micelle concentration, cmc(*), aggregation number, N( *), and micelle molar conductivity, Lambda(M)(cmc), showed that the system aggregation is strongly nonideal. Both cmc(*) and N( *) results were analyzed with two different procedures: (i) the regular solution theory on mixed micelles or Rubingh's theory, and (ii) by the determination of the partial critical micelle concentration of the amphiphile component i in the presence of a constant concentration of the other amphiphile component, cmc(i)( *). The Rubingh procedure gives micelles richer in C(16)TAB than the overall mixtures, while procedure (ii) gives micelles having the same composition as in the complete surfactant mixture (alpha(C(10)TAB). Mixed micelles are larger than pure surfactant ones, with nonspherical shape. Using a literature model, the cause of the synergistic effect seems to be a reduction of the hydrocarbon/water contact at the micelle surface when mixed micelles form. Conductivity and ion-selective electrodes indicate that highly ionized premicelles form immediately before the cmc(*). The air/solution interface is strongly nonideal and much richer in C(16)TAB than the composition in the bulk. When micelles form there is a strong desorption from the air/solution interface because micelles are energetically favored when compared with the monolayer.  相似文献   

7.
In this paper, mixtures of sugar-based decanoyl-N-methylglucamide with three different n-alkyltrimethylammonium bromides (n=12 (DTAB), 14 (TTAB), and 16 (CTAB)) have been studied using conductance and fluorescence spectroscopic techniques. The critical micelle concentration values of pure and mixed systems were determined by both the conductance and the pyrene 1:3 ratio methods. The experimental results were interpreted using thermodynamic mixing approaches based on the pseudophase separation model. These analyses allowed us to determine the interaction parameters and the composition of the mixed micelles through the whole composition range. Since all the ionic surfactants used in this study have the same headgroup, the differences observed between the three mixed systems were attributed to the lengths of their hydrocarbon chains. It was established that, besides interactions of electrostatic character, additional short-range interactions must be considered. By using the static quenching method, the mean micellar aggregation numbers of mixed micelles were obtained. In the cases of the mixed systems with DTAB and TTAB it was observed that the aggregation number is initially reduced with the participation of the ionic component, remaining almost constant and close to the aggregation number of the pure ionic micelle. However, in the systems involving CTAB it is observed that the size of micelles initially increases and then decreases slightly for mixtures with a high content of the ionic component. The hydrophobic index pyrene 1:3 ratio was used to examine possible changes in the micellar micropolarity; however, no definitive conclusions could be derived from these experiments. In order to study the evolution of the local viscosity of the mixed micelles upon addition of the ionic surfactant, fluorescence polarization measurements were carried out with two different probes, fluorescein and coumarin 6. It was found that the participation of the ionic component in the mixed micelle induces the formation of less ordered structure than that of pure nonionic micelles. An attempt was made to correlate these effects with the interaction parameters obtained from the theoretical mixing model and, consequently, with the alkyl chain length of the ionic components.  相似文献   

8.
Critical micelle concentrations of the Cm TAB+12- s-12 (s=3, 4, 5 and m=10, 12, 14, 16) binary systems have been determined, through conductivity and fluorescence measurements, at 298 K. Application of different theoretical approaches to explain mixed micellization shows that non-ideality of the binary systems follows the trend C16TAB+12-3-12相似文献   

9.
The micellization of the binary mixed surfactants comprising of the Gemini surfactant N,N′-bis(dimethyldodecyl)-1,2-ethanediammonium dibromide and 1-dodecyl-3-methylimidazolium bromide has been studied by measurements of density. The apparent molar volumes were calculated for various surfactant concentrations and used to determine the critical micelle concentrations of the mixed surfactants at various compositions. An attractive effect was suggested by negative deviations of the experimental CMC values from the ideal ones. The Margules equation was applied to evaluate the micelle compositions, the activity coefficients of both components, and the excess molar Gibbs free energies of the mixed micelles. The stability of mixed micelles was shown to be enhanced as compared to those formed by single surfactants from the negative values of the excess Gibbs free energy. The comparison of the results obtained from the volumetric and ITC measurements indicated a reasonable good accordance with each other and confirmed the reliability of both methods for investigation on the properties of the mixed micelles.  相似文献   

10.
Upon the addition of a short EO chain nonionic surfactant, poly(oxyethylene) dodecyl ether (C12EOn), to dilute micellar solution of sodium dodecyl sulfate (SDS) above a particular concentration, a sharp increase in viscosity occurs and a highly viscoelastic micellar solution is formed. The oscillatory-shear rheological behavior of the viscoselastic solutions can be described by the Maxwell model at low shear frequency and combined Maxwell-Rouse model at high shear frequency. This property is typical of wormlike micelles entangled to form a transient network. It is found that when C12EO4 in the mixed system is replaced by C12EO3 the micellar growth occurs more effectively. However, with the further decrease in EO chain length, phase separation occurs before a viscoelastic solution is formed. As a result, the maximum zero-shear viscosity is observed at an appropriate mixing fraction of surfactant in the SDS-C12EO3 system. We also investigated the micellar growth in the mixed surfactant systems by means of small-angle X-ray scattering (SAXS). It was found from the SAXS data that the one-dimensional growth of micelles was obtained in all the SDS-C12EOn (n=0-4) aqueous solutions. In a short EO chain C12EOn system, the micelles grow faster at a low mixing fraction of nonionic surfactant.  相似文献   

11.
Gemini表面活性剂联接基团对合成硅基介孔材料结构的影响   总被引:7,自引:0,他引:7  
考察了Gemini表面活性剂不同联接基团对介孔结构的影响, 通过改变联接基团碳链的长度和在联接基团中加入苯基和羟基改变链的柔性和亲水性, 可改变表面活性剂在两相界面的头基面积和电荷分布, 形成不同的表面活性剂溶液结构, 并通过自组装过程控制生成不同介孔材料的孔结构. 当联接基团链长为4~8个碳时, 得到六方相孔道结构, 而当碳链长度增加为10~12个碳时, 形成立方相孔道结构, 其中以GEM16-6-16为模板, 形成了高度有序的MCM-41, 以GEM16-12-16为模板, 则得到高度有序的MCM-48. GEM16-3(OH)-16可合成出层状结构, 但有序性较低. GEM16-(1-Ar-1)-16的cmc较低, 在水溶液中溶解度极低, 当加入共溶剂乙醇时, 得到了空心球结构.  相似文献   

12.
The complex formation between nonionic alkyldimethylamine oxide (CnDMAO, n=14, 16, and 18) and sodium palmitate (NaPa) in the solid phase of CnDMAO/NaPa mixtures and the dependence of the interaction parameter beta of the regular solution theory (RST) on the mixed micelle composition of C16DMAO/NaPa mixtures were investigated. The dissolution temperature showed a maximum at a NaPa mole fraction X(Pa)(*) of 0.3-0.4 for C16DMAO/NaPa and 0.2 for C18DMAO/NaPa. The compositions of the complexes suggested by X(Pa)(*) are C16DMAO: NaPa=3:2 or 2:1 and C18DMAO:NaPa=4:1. The composition X(Pa)(*) depended on the chain length of the amine oxides. The maximum was not observed in the case of the C14DMAO/NaPa/water system. In the range 0.7< or =X(Pa)< or =1.0, dissolution temperature depression was observed with decreasing X(Pa). The dissolution temperature depression was analyzed by taking into account the nonideal behavior in the mixed micelles and the counterion binding on the mixed micelle surface. The negative beta values were obtained for all three mixed systems. It was shown that the counterion activity remained practically constant in the range of 0.7< or =X(Pa)< or =1.0. The cmc values of C16DMAO/NaPa mixtures were determined by pyrene fluorescence measurement. For C16DMAO/NaPa mixtures, the dependence of the RST interaction parameter beta on the mixed micelle composition X(Pa) was determined for a wide range (0.2< or =X(Pa) < or =0.9). In the range 0.2< or =X(Pa)< or =0.5, the beta values were obtained from an analysis of cmc based on the RST. In the range 0.7< or=X(Pa)< or=0.9, the beta values were obtained from an analysis of the dissolution temperature depression. From the analysis of the micelle composition dependence of the beta values, a short-range attractive interaction between the headgroup of C16DMAO and palmitate anion is suggested.  相似文献   

13.
The aqueous self-assembly of a novel lysine-derived surfactant with a gemini-like architecture, designated here as 12-Lys-12, has been experimentally investigated for the amphiphile alone in water and in a mixture with dodecyltrimethylammonium bromide (DTAB). The neat surfactant forms interesting micrometer-sized rigid tubules in the dilute region, resulting in very viscous solutions. For the catanionic mixture with DTAB, various single and multiphase regions were identified (up to a total surfactant concentration of 1.5 wt %) by means of combined polarizing light microscopy, cryo-TEM, and NMR. In the DTAB-rich side, for a mixing molar ratio in the range 2 < DTAB/12-Lys-12 < 4, a region of stable, unilamellar vesicles can be found. Furthermore, it was found that upon addition of 12-Lys-12 to pure DTAB solutions, the mixed micelles grow and beyond a given mixing ratio, vesicles assemble and coexist with small micelles. The transition is not continuous, since there is a narrow mixing range where phase separation occurs. Self-diffusion measurements and cryo-TEM imaging show that the average vesicle radius is on the order of 30-40 nm.  相似文献   

14.
Isothermal titration calorimetry (ITC) was used to determine the critical micelle concentration (cmc) and the thermodynamic parameters associated with the demicellization of sodium oleate (NaO) and mixed micelles composed of the bile salt (BS) sodium cholate (NaC) or sodium deoxycholate (NaDC), respectively, and NaO at a molar ratio of 5:2. The influence of the ionic strength (pure water and 0.1 M NaCl at pH 7.5) as well as that of the temperature (10-70 degrees C) were analyzed. For NaO, two cmc's were detected, indicating a two-step aggregation process, whereas only one cmc was observed for the two BSs. A single aggregation mechanism is also evident for the demicellization of mixed micelles (BS/NaO 5:2). Increasing the ionic strength induces the well-known decrease of the cmc. The cmc shows a minimum at room temperature. The cmc(mix) of the mixed micelles was analyzed using models assuming an ideal or nonideal mixing behavior of both detergents. The thermodynamic parameters describing the enthalpy (deltaHdemic), entropy (deltaSdemic), and Gibbs energy change (deltaGdemic), as well as the change in heat capacity (deltaCp,demic) for demicellization, were obtained from one ITC experiment. From the temperature dependence of deltaHdemic, the change of the hydrophobic surface area of the detergents from the micellar into the aqueous phase was derived. In all cases, the deltaCp,demic values are positive. In addition, the temperature dependence of the size of the formed aggregates was studied by dynamic light scattering (DLS). DLS indicated two populations of aggregates in the mixed system, small primary micelles (0.5-2 nm), and larger aggregates with a hydrodynamic radius in the range of 50-150 nm.  相似文献   

15.
Force/distance curves for silicon nitride tip/flat silica or alumina coated by a layer of mixed micelles of cationic/anionic surfactant are measured by using AFM. Mixtures of SDS/C(n)TAB (with molecular ratios of 3:1 and 20:1) and C(n)TAB/SDS (with molecular ratio of 85:15) were used for alumina and silica substrates, respectively. The number of carbon atoms per C(n)TAB molecule, n, was in the range of 8 to 16. On the basis of the force/distance curves, the elastic modulus, E, and yield strength, Y, of surface micelles are calculated. It is shown that in surfactant mixtures containing SDS the maximal repulsive force (the barrier F(bar)) at which the tip punctured the micelles, as well as the magnitudes of E and Y, attained the maximal values for C(12)TAB ( i.e., when the hydrocarbon chain lengths of two oppositely charged surfactants are the same). Obviously, it can be related to the highest density structure of these micelles. Note that the literature data for the surface micelles from pure C(n)TAB solutions demonstrate a monotonic dependence of F(bar), E, and Y on n in the range of n = 8-16, whereas the oppositely charged mixed surfactant systems yield much higher values of F(bar), E, and Y than does an equivalent chain length from the homologue series plots. The results obtained for mechanical characteristics of mixed micelles at the surface are compared with the results for the relaxation time, tau(2), that characterizes the lifetime (and therefore structure) of the bulk micelles. Both the dependence of F(bar), E, and Y on n for the surface mixed micelles and tau(2) on n for the bulk mixed micelles demonstrate a maximum at n = 12 for the C(n)TAB + SDS system. This correlation between properties of the surface and bulk micelles suggests that the mechanical properties of the surface micelles are largely determined by the interactions between surfactant molecules with surfactant-substrate interactions playing a secondary role.  相似文献   

16.
The present article reports on static and dynamic light scattering (SLS and DLS) studies of aqueous solutions of the nonionic surfactant C12EO6 and the poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer EO20PO68EO20 (P123) at temperatures between 25 and 45 degrees C. In water, P123 self-assembles into spherical micelles with a hydrodynamic radius of 10 nm, and at 40 degrees C, these micelles consist of 131 unimers. Addition of C12EO6 leads to an association of the surfactant molecules to the P123 micelles and mixed micelles are formed. The size and structure of the mixed micelles as well as interparticle interactions were studied by varying the surfactant-to-copolymer (C12EO6/P123) molar ratio. The novelty of this study consists of a composition-induced structural change of the mixed micelles at constant temperature. They gradually change from being spherical to polymer-like with increasing C12EO6 content. At low C12EO6/P123 molar ratios (below 12), the SLS measurements showed that the molar mass of the mixed micelles decreases with an increasing amount of C12EO6 in the micelles for all investigated temperatures. In this regime, the mixed micelles are spherical and the DLS measurements revealed a decrease in the hydrodynamic radius of the mixed micelles. An exception was found for C12EO6/P123 molar ratios between 2 and 3, where the mixed micelles become rodlike at 40 degrees C. This was the subject of a previous study and has hence not been investigated here. At high molar ratios (48 and above), the polymer-like micelles present a concentration-induced growth, similar to that observed in the pure C12EO6/water system.  相似文献   

17.
Demixing of fluorocarbon and hydrocarbon surfactants to form coexisting fluorocarbon-rich and hydrocarbon-rich micelles has been studied by small angle neutron scattering in aqueous solution, using an equimolar mixture of cetyltrimethylammonium chloride and the partially fluorinated cationic surfactant N-(1,1,2,2-tetrahydroperfluorodecanyl)pyridinium chloride, with a deuterated pyridinium headgroup. Measurements have been performed under varying experimental conditions: in both pure aqueous solutions and with salt (0.10 M NaCl), at several contrasts for neutrons obtained by varying the H(2)O/D(2)O ratio, mainly at 25 degrees C but also at 60 degrees C to promote mixing of the surfactants. The experiments show that a substantial residual scattering is retained at the solvent composition where the average scattering length density of mixed micelles would match that of the solvent. It is moreover observed that, in solutions without added salt, a prominent correlation peak observed in 100% D(2)O disappears at the match point. These observations are in accordance with a very broad composition distribution, possibly composed of two populations of mixed micelles of similar sizes but different compositions, but would not result from micelles with merely a highly inhomogeneous internal structure. Increasing the temperature from 25 to 60 degrees C reduces substantially the scattered intensity at zero angle at the match point, as expected for a less broad population of mixed micelles. In the numerical analysis, the scattering data for scattering vector q > or = 0.02 A(-1) were analyzed by the indirect Fourier transform method to give the scattering at zero angle. From these data, the average micelle aggregation number was obtained as 76 at 25 degrees C and 54 at 60 degrees C. The contrast variation results for the intensity at zero angle give a measure of the width of the micelle distribution, which is obtained as sigma = 0.33 at the lower temperature and sigma = 0.20 at 60 degrees C. The result at the low temperature is compatible with the formation of two populations that are polydisperse (sigma = 0.07) and centered around 18 and 82%; other broad distributions cannot be excluded.  相似文献   

18.
Properties of the mixed micelles of tetraethoxylated nonylphenol and dodecaethoxylated nonylphenol (NP12) in water are studied by spectrophotometry, dynamic and static light scattering methods. Data on the composition, aggregation numbers (N), sizes (R h), and hydration (n OE) of mixed and individual micelles of NP12 are obtained. Two NP12 concentration regions are disclosed where mixed micelles of various compositions but with the close values of N, R h, and n OE are present. It is established that the sizes and aggregation numbers of mixed micelles are noticeably larger than those of individual micelles. Features of the mixing of two studied surfactants in a micellar state are analyzed in terms of the theory of phase separation.  相似文献   

19.
20.
两性离子甜菜碱表面活性剂(SB3-12)胶束具有较好的生物相容性,由于相反电荷的极性头之间具有静电中和作用,胶束表面具有小的负电荷密度。当加入阴离子的十二烷基硫酸钠(SDS)以后,负离子SD-与SB3-12胶束极性区内层季铵正电荷的静电中和作用,能连续地调节胶束表面磺酸基的负电荷密度,这有利于对药物分子的选择性增溶和调节在生理条件下的药物的输送。等温滴定量热(ITC)研究发现SB3-12和SDS有强的协同效应,混合临界胶束浓度(CMC)和胶束化焓明显降低,并得到两者协同效应的弱静电作用机理。当模型药物分子芦丁(Rutin)与SB3-12/SDS混合胶束作用时,芦丁7位羟基的氢解离后的阴离子与SDS共同作用于SB3-12形成混合胶束。UV-Vis吸收光谱和~1H NMR谱研究发现,在SB3-12胶束中,芦丁分子的A环位于季铵阳离子附近,B环位于两个相反电荷之间的弱极性区域。在SDS胶束中,B环位于栅栏层,而A环和二糖暴露于水相侧。在混合胶束中,随着SDS摩尔分数增加,对A环的静电吸引变弱。离子表面活性剂对两性离子表面活性剂胶束表面电荷密度的调节作用,本质上是对胶束极性区域的物理及化学性质的微调,进而实现对药物的可控增溶。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号