首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spin-lattice relaxation times (T?s) of small water-soluble spin-labels in the aqueous phase as well as lipid-type spin-labels in membranes increase when the microwave frequency increases from 2 to 35 GHz (Hyde, et al., J. Phys. Chem. B 108 (2004) 9524-9529). The T?s measured at W-band (94 GHz) for the water-soluble spin-labels CTPO and TEMPONE (Froncisz, et al., J. Magn. Reson. 193 (2008) 297-304) are, however, shorter than when measured at Q-band (35 GHz). In this paper, the decreasing trends at W-band have been confirmed for commonly used lipid-type spin-labels in model membranes. It is concluded that the longest values of T? will generally be found at Q-band, noting that long values are advantageous for measurement of bimolecular collisions with oxygen. The contribution of dissolved molecular oxygen to the relaxation rate was found to be independent of microwave frequency up to 94 GHz for lipid-type spin-labels in membranes. This contribution is expressed in terms of the oxygen transport parameter W=T??1(Air)-T??1(N?), which is a function of both concentration and translational diffusion of oxygen in the local environment of a spin-label. The new capabilities in measurement of the oxygen transport parameter using saturation-recovery (SR) EPR at Q- and W-band have been demonstrated in saturated (DMPC) and unsaturated (POPC) lipid bilayer membranes with the use of stearic acid (n-SASL) and phosphatidylcholine (n-PC) spin-labels, and compared with results obtained earlier at X-band. SR EPR spin-label oximetry at Q- and W-band has the potential to be a powerful tool for studying samples of small volume, ~30 nL. These benefits, together with other factors such as a higher resonator efficiency parameter and a new technique for canceling free induction decay signals, are discussed.  相似文献   

2.
Conventional oxazolidine spin-labelled lipids have the axial14N-hyperfine tensorz-axis directed along the long axis of the lipid chain. Investigation of lateral ordering of the lipids in membranes requires measurement of thex-y Zeeman anisotropy of the nonaxialg-tensor at high fields. Both the lateral and transverse ordering of the lipid chains in membranes of dimyristoyl phosphatidylcholine containing 40 mol% cholesterol in the liquid-ordered phase have been studied with 94 GHz electron paramagnetic resonance spectroscopy. This has been done by using probe amounts of phosphatidylcholine systematically spin-labelled at positionsn along the length of thesn- 2 chain [n-PCSL, 1-acyl-2-(n-(4,4-dimethyloxazolidine-N-oxyl) stearoyl)-sn-glycero-3-phosphocholine]. Nonaxial (gxx?gyy) anisotropy of the spin-labelled lipid chains is detected over a wide range of temperature throughout the liquid-ordered phase. The transverse profile of lateral ordering with position,n, of chain labelling follows the profile of the rigid steroid nucleus of cholesterol. It becomes progressively averaged towards the terminal methyl group of thesn- 2 chain, in the region of the flexible hydrocarbon chain of cholesterol. The nonaxial lipid ordering may be related to lipid domain formation in membranes containing cholesterol and saturated-chain lipids.  相似文献   

3.
A reference arm W-band (94 GHz) microwave bridge with two sample-irradiation arms for saturation recovery (SR) EPR and ELDOR experiments is described. Frequencies in each arm are derived from 2 GHz synthesizers that have a common time-base and are translated to 94 GHz in steps of 33 and 59 GHz. Intended applications are to nitroxide radical spin labels and spin probes in the liquid phase. An enabling technology is the use of a W-band loop-gap resonator (LGR) [J.W. Sidabras, R.R. Mett, W. Froncisz, T.G. Camenisch, J.R. Anderson, J.S. Hyde, Multipurpose EPR loop-gap resonator and cylindrical TE011 cavity for aqueous samples at 94 GHz, Rev. Sci. Instrum. 78 (2007) 034701]. The high efficiency parameter (8.2 GW−1/2 with sample) permits the saturating pump pulse level to be just 5 mW or less. Applications of SR EPR and ELDOR to the hydrophilic spin labels 3-carbamoyl-2,2,5,5-tetra-methyl-3-pyrroline-1-yloxyl (CTPO) and 2,2,6,6,-tetramethyl-4-piperidone-1-oxyl (TEMPONE) are described in detail. In the SR ELDOR experiment, nitrogen nuclear relaxation as well as Heisenberg exchange transfer saturation from pumped to observed hyperfine transitions. SR ELDOR was found to be an essential method for measurements of saturation transfer rates for small molecules such as TEMPONE. Free induction decay (FID) signals for small nitroxides at W-band are also reported. Results are compared with multifrequency measurements of T1e previously reported for these molecules in the range of 2–35 GHz [J.S. Hyde, J.-J. Yin, W.K. Subczynski, T.G. Camenisch, J.J. Ratke, W. Froncisz, Spin label EPR T1 values using saturation recovery from 2 to 35 GHz. J. Phys. Chem. B 108 (2004) 9524–9529]. The values of T1e decrease at 94 GHz relative to values at 35 GHz.  相似文献   

4.
Loop-gap resonator (LGR) technology has been extended to W-band (94GHz). One output of a multiarm Q-band (35GHz) EPR bridge was translated to W-band for sample irradiation by mixing with 59 GHz; similarly, the EPR signal was translated back to Q-band for detection. A cavity resonant in the cylindrical TE011 mode suitable for use with 100 kHz field modulation has also been developed. Results using microwave frequency modulation (FM) at 50 kHz as an alternative to magnetic field modulation are described. FM was accomplished by modulating a varactor coupled to the 59 GHz oscillator. A spin-label study of sensitivity was performed under conditions of overmodulation and gamma2H1(2)T1T2<1. EPR spectra were obtained, both absorption and dispersion, by lock-in detection at the fundamental modulation frequency (50 kHz), and also at the second and third harmonics (100 and 150 kHz). Source noise was deleterious in first harmonic spectra, but was very low in second and third harmonic spectra. First harmonic microwave FM was transferred to microwave modulation at second and third harmonics by the spins, thus satisfying the "transfer of modulation" principle. The loaded Q-value of the LGR with sample was 90 (i.e., a bandwidth between 3 dB points of about 1 GHz), the resonator efficiency parameter was calculated to be 9.3 G at one W incident power, and the frequency deviation was 11.3 MHz p-p, which is equivalent to a field modulation amplitude of 4 G. W-band EPR using an LGR is a favorable configuration for microwave FM experiments.  相似文献   

5.
Simulations are performed of 34- and 9-GHz EPR spectra, together with 94-GHz EPR spectra, from phospholipid probes spin-labelled at the C4-C14 positions of the sn-2 chain, in liquid-ordered and gel-phase membranes of dimyristoyl phosphatidylcholine with high and low cholesterol contents. The multifrequency simulation strategy involves: (i) obtaining partially averaged spin-Hamiltonian tensors from fast-motional simulations of the 94-GHz spectra; (ii) performing slow-motional simulations of the 34- and 9-GHz spectra by using these pre-averaged tensors with the stochastic Liouville formalism; (iii) constructing, by simulation, slow-motional calibrations for the differences, DeltaA(zz)(qx) and Deltag(zz)(qx), in effective A(zz)-hyperfine splittings and g(zz)-values between 34- (or 94-GHz) and 9-GHz spectra; (iv) using such calibrations for DeltaA(zz)(qx) and Deltag(zz)(qx) and dynamic parameters from stage (ii) as a guide to adjust the extent of pre-averaging of the spin-Hamiltonian tensors; and (v) repeating the 34- and 9-GHz simulations of stage (ii). By using this scheme it is possible to obtain consistent values of the rotational diffusion coefficients, D(R perpendicular) and D(R//), and the long-axis order parameter, S(zz), that characterize the slow axial motion of the lipid chains, from spectra at both 34 and 9GHz. Inclusion of spectra at 34GHz greatly improves precision in determining the D(R//) element of the slow diffusion tensor in these systems.  相似文献   

6.
The experimental works described are performed by the authors over last two decades by means of the LFD EPR technique. The essence of this method is low-frequency detection of the longitudinal spin magnetization while the magnetic resonance is excited by a strong microwave field. The first kind of LFD EPR is the enchanced longitudinal susceptibility effect (ELSE) which has been elaborated and applied to study spin thermodynamics in solids since 1972. Various applications of ELSE are described such as direct measuring of the spin-spin interaction temperatureT ss in the course of resonance saturation, spin-lattice and cross relaxation, dynamic nuclear polarization etc. Another version of LFD EPR was employed to study electron spin-lattice relaxation of paramagnetic centers in high-temperature superconductors (HTSC). Recent experimental data are presented on the electron spin-lattice relaxation of Cu2+ ions in YBa2Cu3O6+x at various temperatures andx values.  相似文献   

7.
Petroleum of Arabian and Colombian origin was studied by electron paramagnetic resonance (EPR) spectroscopy at X- (9 GHz), Q- (34 GHz) and W-bands (94 GHz). The experiments were performed at room temperature (about 300 K) and at 77 K (W-band only). The asymmetry in the lines corresponding to free radicals was observed more intensely in the W-band spectra. The values of the line width ΔH in the spectra increased linearly with the microwave frequency utilized in the EPR experiments. A mathematical simulation of the free radical signal for the EPR spectra in three bands with a set of parameters corresponding to a single species was attempted, but this was not exactly coincident with the experimental signals, suggesting that the hyperfine interaction of the unpaired electron with its neighborhood corresponds to more than one species of radical in the molecular structure of the petroleum asphaltene.  相似文献   

8.
Smectic lipid-water systems were macroscopically oriented between glass slides. Lipids used were dimyristoyllecithin, potassium oleate, and potassium linolate. Proton spectra of hitherto unattained resolution were observed when these lipid model membranes were oriented at the magic angle. The T1 value of resolved resonances was measured as a function of temperature at 100 and 360 MHz. The residual linewidth at the magic angle orientation is determined by the inherent anisotropy of diamagnetic susceptibility in lipid bilayers. The T2 value of the methylene resonance in the potassium oleate-water system was evaluated from a saturation study. The conclusion from these experiments is that the model membrane is a two-dimensional fluid; the molecular motion is a plane perpendicular to the bilayer normal is characterized by a single correlation time of the order of 10−10 sec. Dimyristoyllecithin was also investigated in vesicle form; T, values and activation energies differ from the multilayer results but most of the discrepancy can be ascribed to the different water contents of the two systems.  相似文献   

9.
In vivo electron paramagnetic resonance (EPR) has been very useful for studies in animals, and these results suggest that there are some very attractive potential applications in human subjects. In this article, we describe our rationale for the clinical application of in vivo EPR, some of the principal technical challenges, the initial results in human subjects, and our evaluation of the areas where in vivo EPR is likely to play an important clinical role in the near future. The most obvious area of very high potential for clinical applications is tissue oximetry, where in vivo EPR can provide repeated and accurate measurements of tissue pO2, a type of measurement that cannot be obtained by other techniques. Oximetry is capable of providing clinicians with information that can impact directly on diagnosis and therapy, especially for peripheral vascular disease, oncology, and wound healing. The other area of great immediate importance is the ability of in vivo EPR to measure clinically significant exposures to ionizing radiation after the fact, which may occur due to accidents, terrorist activity, or nuclear war. The results obtained already from human subjects demonstrate the feasibility of the use of in vivo EPR for measurements in human subjects. We anticipate that in vivo EPR will play a vital role in the clinical management of various pathologies in the years to come.  相似文献   

10.
11.
Spin-correlated radical pairs are the short-lived intermediates of the primary energy conversion steps of photosynthesis. In this paper, we develop a comprehensive model for the spin-polarized electron paramagnetic resonance (EPR) spectra of these systems. Particular emphasis is given to a proper treatment of the alignment of the photosynthetic bacteria by the field of the EPR spectormeter. The model is employed to analyze time-resolved W-band (94 GHz) EPR spectra of the secondary radical pair P 700 + A 1 ? in photosystem I formed by photoexcitation of the deuterated and15N-substituted cyanobacteriumSynechococcus lividus. Computer simulations of the angular-dependent EPR spectra of P700/+A1/? provide values for the order parameter of the cyanobacterial cells and for the orientation of the membrane normal in a molecular reference system. The order parameter from EPR compares favorably with corresponding data from electron microscopy obtained for theS. lividus cells under similar experimental conditions. It is shown that high-field EPR of a magnetically aligned sample in combination with the study of quantum beat oscillations represents a powerful structural tool for the short-lived radical pair intermediates of photosynthesis.  相似文献   

12.
Conditions of joint equilibrium and stability are derived for a spherical lipid vesicle and a tubular lipid membrane (TLM) pulled from this vesicle. The obtained equations establish relationships between the geometric and physical characteristics of the system and the external parameters, which have been found to be controllable in recent experiments. In particular, the proposed theory shows that, in addition to the pressure difference between internal and external regions of the system, the variable spontaneous average curvature of the lipid bilayer (forming the TLM) also influences the stability of the lipid tube. The conditions for stability of the cylindrical phase of TLMs after switching off the external force that initially formed the TLM from a vesicle are discussed. The loss of system stability under the action of a small axial force compressing the TLM is considered.  相似文献   

13.
The 275GHz electron-paramagnetic-resonance spectrometer we reported on in 2004 has been equipped with a new probe head, which contains a cavity especially designed for operation in continuous-wave mode. The sensitivity and signal stability that is achieved with this new probe head is illustrated with 275GHz continuous-wave spectra of a 1mM frozen solution of the complex Fe(III)-ethylenediamine tetra-acetic acid and of 10mM frozen solutions of the protein rubredoxin, which contains Fe(3+) in its active site, from three different organisms. The high quality of the spectra of the rubredoxins allows the determination of the zero-field-splitting parameters with an accuracy of 0.5GHz. The success of our approach results partially from the enhanced absolute sensitivity, which can be reached using a single-mode cavity. At least as important is the signal stability that we were able to achieve with the new probe head.  相似文献   

14.
In this work, by using the respective advantages of W- and X-band electron paramagnetic resonance (EPR) spectroscopy techniques to investigate electron transport processes, we have studied the light-induced redox transients of the primary electron donor P700 and the secondary acceptor A1 in photosystem (PS) I complexes of intact cyanobacterial cellsSynechocystis sp. PCC 6803. We found that the kinetic behavior of the cation radical P700 ·+ generated by illumination with continuous light, and the EPR intensity of the radical pair P700 ·+A 1 ·? generated upon laser pulse illumination strongly depend on the illumination prehistory (either the sample was frozen in the dark or during illumination). Both these processes were sensitive to the presence of electron transport inhibitors which block electron flow between the two photosystems. In line with our X-band EPR data on the kinetics of light-induced redox transients of P700, our high-field W-band EPR study of the radical-pair state P700 ·+A 1 ·? shows that photosynthetic electron flow through the PS I reaction center is controlled both on the donor and on the acceptor side of PS I.  相似文献   

15.
Artal P  Guirao A 《Optics letters》1998,23(21):1713-1715
The relative contributions of optical aberrations of the cornea and the crystalline lens to the final image quality of the human eye were studied. The aberrations of the entire eye were obtained from pairs of double-pass retinal images, and the aberrations of the cornea were obtained from videokeratographic data. Third-order spherical aberration and coma were significantly larger for the cornea than for the complete eye, indicating a significant role of the lens in compensating for corneal aberrations. In a second experiment retinal images were recorded in an eye before and after we neutralized the aberrations of the cornea by having the subjects wear swimming goggles filled with saline water, providing a direct estimate of the optical performance of the crystalline lens.  相似文献   

16.
An analytical expression is obtained for the lateral pressure profile in the hydrophobic part of a lipid bilayer of finite curvature. Calculations are carried out within a microscopic model of a lipid bilayer, according to which the energy of a lipid chain represents the energy of a flexible string of finite thickness and the interaction between lipid chains is considered as a steric (entropic) repulsion. This microscopic model allows one to obtain an expression for the distribution of lateral pressure in membranes with given curvature if one considers the bending of a membrane as a small deviation from a flat conformation and applies perturbation theory in the small parameter L 0 J, where L 0 is the hydrophobic thickness of a monolayer and J is the mean curvature of the lipid bilayer. The resulting pressure profile depends on the microscopic parameters of the lipid chain: the bending modulus of the lipid chain, incompressible area per lipid chain, and the thickness of a flat monolayer. The coefficient of entropic repulsion between lipids is calculated self-consistently. The analytical results obtained for the lateral pressure distribution are in qualitative agreement with molecular dynamic simulations.  相似文献   

17.
In my reconstruction of Bohr's reply to the Einstein-Podolsky-Rosen argument, I pointed out that Bohr showed explicitly, within the framework of the complementarity interpretation, how a locally maximal measurement on a subsystem S2 of a composite system S1+S2, consisting of two spatially separated subsystems, can make determinate both a locally maximal Boolean subalgebra for S2 and a locally maximal Boolean subalgebra for S1. As it stands, this response is open to an objection. In this note, I show that meeting the objection requires a modification of the complementarity thesis concerning what propositions can be taken as determinate, or what observables can be raken to have values, in a given measurement context.  相似文献   

18.
19.
Continuous-wave (CW) EPR measurements of enhancements in spin-lattice (T(1)-) relaxation rate find wide application for determining spin-label locations in biological systems. Often, especially in membranes, the spin-label rotational motion is anisotropic and subject to an orientational potential. We investigate here the effects of anisotropic diffusion and ordering on non-linear CW-EPR methods for determining T(1) of nitroxyl spin labels. Spectral simulations are performed for progressive saturation of the conventional in-phase, first-harmonic EPR signal, and for the first-harmonic absorption EPR signals detected 90 degrees -out-of-phase with respect to the Zeeman field modulation. Motional models used are either rapid rotational diffusion, or strong-jump diffusion of unrestricted frequency, within a cone of fixed maximum amplitude. Calculations of the T(1)-sensitive parameters are made for both classes of CW-experiment by using motional parameters (i.e., order parameters and correlation times), intrinsic homogeneous and inhomogeneous linewidth parameters, and spin-Hamiltonian hyperfine- and g-tensors, that are established from simulation of the linear CW-EPR spectra. Experimental examples are given for spin-labelled lipids in membranes.  相似文献   

20.
Highly oriented solid-supported lipid membranes in stacks of controlled number N ≃ 16 (oligo-membranes) have been prepared by spin-coating using the uncharged lipid model system 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC). The samples have been immersed in aqueous polymer solutions for control of osmotic pressure and have been studied by X-ray reflectivity. The bilayer structure and fluctuations have been determined by modelling the data over the full q-range. Thermal fluctuations are described using the continuous smectic Hamiltonian with the appropriate boundary conditions at the substrate and at the free surface of the stack. The resulting fluctuation amplitudes and the pressure-distance relation are discussed in view of the inter-bilayer potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号