首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We enclosed cisplatin (CDDP), an anticancer drug, inside single-wall carbon nanohorns (SWNH) with holes opened by being heated from room temperature to a target temperature (475-580 degrees C) in flowing dry air, with an increase rate of 1 degrees C/min. The optimum target temperature was found to be 500 degrees C, in terms of the least amount of CDDP deposited outside the SWNH, when the quantity of CDDP encapsulated inside the SWNH was 12 wt %. The incorporated CDDP was slowly released from the SWNH in phosphate buffer saline, and the released quantity was 80%, which was greatly improved from the previous value of 15%. This indicated that a CDDP-containing SWNH could become more potentially useful for biological applications.  相似文献   

2.
We incorporated cisplatin inside single-wall carbon nanohorns (NHs) and revealed that 70% of the cisplatin was released from NHs having holes with hydrogen-terminated edges when they were immersed in phosphate-buffered saline (PBS). However, only 15% was released from NHs having holes with oxygen-containing functional groups at the hole edges (NHox). Elemental analysis indicated that -COOH and -OH groups at the hole edges of NHox changed mainly to -COONa and -ONa groups by immersion in PBS. These groups decreased the practical hole diameters, which resulted in hindering the cisplatin release from NHox. This means that the release of the material from inside NHox would be controlled by chemically modifying the functional groups attached to the hole edges of NHox; thus the potential applicability of NHox to a material carrier would be enhanced.  相似文献   

3.
The large diameter of single-wall carbon nanohorns (SWNHs) allows various molecules to be easily incorporated in hollow nanospaces. In this report, we prove that the nanospaces of SWNHs even work as the chemical reaction field at high temperature; that is, Gd-acetate clusters inside SWNHs were transformed into ultrafine Gd(2)O(3) nanoparticles with their particle size retained even after heat-treatment at 700 degrees C. This indicates that the confinement of the Gd-acetate clusters in a deep potential well of the SWNH nanospaces prevented a migration to form larger particles, giving rise to ultrafine Gd(2)O(3) nanoparticles of 2.3 nm in average diameter, which is much smaller than the case without SWNHs. The Gd(2)O(3) nanoparticles thus obtained were demonstrated to be actually useful to the magnetic resonance imaging. We believe that the presented effectiveness of the inner hollow spaces of SWNHs, therefore, also those of the carbon nanotubes, for high-temperature chemical reactions should be highlighted, and that the thus produced novel nanomaterials are promising to expand the fields of nanoscience.  相似文献   

4.
Due to the simplicity of the process, holes in the graphene walls of single-wall carbon nanotubes (SWNTs) and single-wall carbon nanohorns (SWNHs) have often been opened using O2 gas at high temperatures, even though this contaminates the nanotubes with carbonaceous dust (C-dust). To open holes with less C-dust contamination, we found that a slow temperature increase of 1 degrees C/min or less, in air, was effective. We also found that SWNHs having little C-dust could store a large quantity of materials inside the tubes. We infer that the local temperature increase due to the exothermic reaction of combustion may have been suppressed in the slow combustion process, which was effective in reducing the C-dust.  相似文献   

5.
A soluble hybrid nanomaterial that combines fullerenes and carbon nanohorns (CNHs) has been prepared and fully characterized. Electrochemical investigations revealed that the CNHs modify the electron accepting ability of C(60) in the hybrid material.  相似文献   

6.
7.
8.
9.
Noncovalent interactions between purified HiPCO single-wall carbon nanotubes (SWNT) and a [60]fullerene-pyrene dyad, synthesized through a regioselective double-cyclopropanation process, produce stable suspensions in which the tubes are very well dispersed, as evidenced by microscopy characterization. Cyclic voltammetry experiments and photophysical characterization of the suspensions in organic solvents are all indicative of sizeable interactions of the pyrene moiety with the SWNT and, therefore, of the prevalence in solution of [60]fullerene-pyreneSWNT hybrids.  相似文献   

10.
Carbyne, an infinite carbon chain, has attracted much interest and induced significant controversy for many decades. Recently, the presence of linear carbon chains (LCCs), which were confined stably inside double-wall carbon nanotubes (DWCNTs) and multiwall carbon nanotubes (MWCNTs), has been reported. In this study, we present a novel method to produce LCCs in a film of carbon nanotubes (CNTs). Our transmission electron microscopy and Raman spectroscopy revealed the formation of a bulk amount of LCCs after electric discharge of CNT films, which were used as field emission cathodes. The LCCs were confined inside single-wall CNTs as well as DWCNTs. Furthermore, two or three LCCs in parallel with each other are encapsulated when the inner diameter of CNT is larger than approximately 1.1 nm.  相似文献   

11.
Vibrational-rotational properties of CH(4) adsorbed on the nanopores of single-wall carbon nanohorns (SWCNHs) at 105-140 K were investigated using IR spectroscopy. The difference vibrational-rotational bands of the ν(3) and ν(4) modes below 130 K show suppression of the P and R branches, while the Q branches remain. The widths of the Q branches are much narrower than in the bulk gas phase due to suppression of the Doppler effect. These results indicate that the rotation of CH(4) confined in the nanospaces of SWCNHs is highly restricted, resulting in a rigid assembly structure, which is an anomaly in contrast to that in the bulk liquid phase.  相似文献   

12.
13.
A simple model is developed to treat the energy levels and spectroscopy of diatomic molecules inside C 60. The C 60 cage is treated as spherically symmetric, and the coupling to the C 60 vibrations is ignored. The remaining six degrees of freedom correspond to the vibrations and rotations of the diatomic molecule and the rattling vibration of the molecule inside the cage. By using conservation of angular momentum, we can remove two of these motions and simplify the calculations. The resulting energy levels are simple and can be labeled by a set of quantum numbers. The IR and Raman spectra look like those of gas-phase diatomic molecules at low temperatures. At higher temperatures, hot bands due to the low-frequency rattling mode appear, and the spectrum becomes congested, looking like a solution spectrum.  相似文献   

14.
This paper evaluates the potential of oxidized single-walled carbon nanohorns (o-SWNHs) immobilized on the pores of a hollow fiber (HF) for the direct immersion solid-phase microextraction of triazines from waters. The fabrication of the device requires the oxidation of the nanoparticles by means of microwave irradiation in order to obtain a homogeneous dispersion in methanol. Then, a porous hollow fiber is immersed in the methanolic dispersion of the o-SWNHs under ultrasound stirring. This procedure permits the immobilization of the o-SWNHs in the pores of the hollow fiber. For the extraction, a stainless steel wire was introduced inside the fiber to allow the vertical immersion of the o-SWNHs-HF in the aqueous standard/water sample. The triazines were preconcentrated on the immobilized o-SWNHs and further eluted using 150 μL of methanol. The solvent was evaporated and the residue reconstituted in 10 μL of methanol for sensitivity enhancement. Gas chromatography–mass spectrometry was selected as instrumental technique. The limits of detection were between 0.05 and 0.1 μg?L?1 with an excellent precision (expressed as relative standard deviation) between runs (below 10.2 %) and between fibers (below 12.8 %). Finally, the method was applied to the determination of the triazines in fortified waters, an average recovery value of 90 % being obtained.  相似文献   

15.
We synthesised an uncharged amphiphilic porphyrin, meso-tetrakis-(3,5-di-{2-[2-(2-methoxy-ethoxy)-ethoxy]-ethoxy}-phenyl)-porphyrin, and investigated the supramolecular self-assembly of the porphyrins and the incorporation of C60 molecules into the assembly in aqueous solutions. Spectroscopic and dynamic light scattering studies on the assembly of the amphiphilic porphyrin support that the amphiphilic porphyrins are likely held together through enhanced ππ interactions by pronounced hydrophobic effects in aqueous solutions. It was also found that C60 molecules are efficiently incorporated into the assembly. The fluorescence emitted from the porphyrin ring of the porphyrin/C60 co-assembly in aqueous solution is largely quenched, implying the presence of strong electronic interactions between C60 and porphyrin molecules in the supramolecular assembly.  相似文献   

16.
Single-wall carbon carcass nanoparticles (nanohorns) (CNHs) are synthesized by two methods: electric arc and electron evaporation of graphite in the inert atmosphere. Distinctions in the structures of obtained materials are revealed using electron microscopy and Raman spectroscopy. The chemical structure of the CNH surface is investigated by X-ray photoelectron and NEXAFS spectroscopy during oxidation. It is found that oxidation causes the destruction of CNH agglomerates and weakly affects the structure of graphene nets. However, these changes are sufficient for an increase in the infrared radiation absorption by the dispersion of nanohorns in water. It is shown that the efficiency of 808 nm laser heating of a CNH dispersion depends on the synthesis method and chemical modification of nanoparticles, which enables their potential use for local hyperthermia of cells of living organisms in cancer therapy.  相似文献   

17.
The nanoporosities and catalytic activities of Pd nanoparticles dispersed on single wall carbon nanohorns (Pd-SWCNHs) and oxidized single wall carbon nanohorns (Pd-ox-SWCNHs) were examined. A transmission electron microscopy (TEM) observation indicated that Pd nanoparticles of 2-3 nm size were highly dispersed on both the SWCNHs. X-ray photoelectron spectra and N2 adsorption isotherms at 77 K illustrated the differences in the deposition process mechanisms of the Pd-SWCNHs and Pd-ox-SWCNHs; the deposition process depended on the surface functional groups. The supercritical H2 adsorption isotherms at 77 K suggested the relationships between the interaction of Pd-SWCNHs and Pd-ox-SWCNHs with H2 and the catalytic activities for a water formation reaction in a gas phase at 273 or 298 K. The catalytic activity measurement and TEM observation of the catalysts after the reactions demonstrated that the Pd-SWCNHs and Pd-ox-SWCNHs are promising catalysts.  相似文献   

18.
19.
Xenon was inserted into C(60) by heating C(60) in 3000 atm of xenon gas at 650 degrees C. The Xe@C(60) was separated from the empty C(60) by using HPLC. The (13)C resonance for Xe@C(60) is shifted downfield by 0.95 ppm (192 Hz). (129)Xe NMR showed a line 179.2 ppm downfield from xenon gas.  相似文献   

20.
Extraction of fullerene-containing carbon soots with various organic solvents has been studied at room temperature. Yields and compositions of toluene-soluble carbon soot fractions have been determined. Extracts of different carbon soot samples treated according to the toluene—trichlorobenzene—nitrobenzene scheme are studied.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 7, pp. 1223–1225, July, 1995.The authors are grateful to E. B. Yagubskii and I. S. Krainskii for helpful discussion and help in the work.The work was financially supported by the Russian Foundation for Basic Research (Project No. 93-03-18705).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号