首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have developed a new color-encoding method that facilitates high-throughput screening of one-bead one-compound (OBOC) combinatorial libraries. Polymer beads displaying chemical compounds or families of compounds are stained with oil-based organic dyes that are used as coding tags. The color dyes do not affect cell binding to the compounds displayed on the surface of the beads. We have applied such rainbow beads in a multiplex manner to discover and profile ligands against cell surface receptors. In the first application, a series of OBOC libraries with different scaffolds or motifs are each color-coded; small samples of each library are then combined and screened concurrently against live cells for cell attachment. Preferred libraries can be rapidly identified and selected for subsequent large-scale screenings for cell surface binding ligands. In a second application, beads with a series of peptide analogues (e.g., alanine scan) are color-coded, combined, and tested for binding against a specific cell line in a single-tissue culture well; the critical residues required for binding can be easily determined. In a third application, ligands reacting against a series of integrins are color-coded and used as a readily applied research tool to determine the integrin profile of any cell type. One major advantage of this straightforward and yet powerful method is that only an ordinary inverted microscope is needed for the analysis, instead of sophisticated (and expensive) fluorescent microscopes or flow cytometers.  相似文献   

2.
During the last 12 years, antibody combinatorial libraries have provided a new approach for the construction and production of reagents and drugs based on the human monoclonal antibodies. Studies employing antibodies or antibody mimics have become an important part of the explosive growth of proteomics. This places tremendous emphasis on the new approaches for faster library screening, improved methods of selection and evaluation of novel applications. The phage display system, together with its variants of ribosome and bacterial display, is the most extensively used method for the rapid screening of large antibody libraries. However, in the last two years the need to improve selection methods together with a complex patent situation regarding the phage display system, has also directed research towards the possibility of performing antibody selection by colony filter screening. Here, we summarise the results obtained by these different methods of selection comparing their efficacy and advantages.  相似文献   

3.
A catalyst design methodology, utilizing combinatorial synthesis in parallel with chemometric analysis, is presented, which considers the 3D steric and electrostatic properties of substituents about a constant core structure.  相似文献   

4.
Integration of flexible data-analysis tools with cheminformatics methods is a prerequisite for successful identification and validation of “hits” in high-throughput screening (HTS) campaigns. We have designed, developed, and implemented a suite of robust yet flexible cheminformatics tools to support HTS activities at the Broad Institute, three of which are described herein. The “hit-calling” tool allows a researcher to set a hit threshold that can be varied during downstream analysis. The results from the hit-calling exercise are reported to a database for record keeping and further data analysis. The “cherry-picking” tool enables creation of an optimized list of hits for confirmatory and follow-up assays from an HTS hit list. This tool allows filtering by computed chemical property and by substructure. In addition, similarity searches can be performed on hits of interest and sets of related compounds can be selected. The third tool, an “S/SAR viewer,” has been designed specifically for the Broad Institute’s diversity-oriented synthesis (DOS) collection. The compounds in this collection are rich in chiral centers and the full complement of all possible stereoisomers of a given compound are present in the collection. The S/SAR viewer allows rapid identification of both structure/activity relationships and stereo-structure/activity relationships present in HTS data from the DOS collection. Together, these tools enable the prioritization and analysis of hits from diverse compound collections, and enable informed decisions for follow-up biology and chemistry efforts.  相似文献   

5.
A case study is presented illustrating the design of a focused CDK2 library. The scaffold of the library was detected by a feature trees search in a fragment space based on reactions from combinatorial chemistry. For the design the software LoFT (Library optimizer using Feature Trees) was used. The special feature called FTMatch was applied to restrict the parts of the queries where the reagents are permitted to match. This way a 3D scoring function could be simulated. Results were compared with alternative designs by GOLD docking and ROCS 3D alignments.  相似文献   

6.
High-throughput screening (HTS) campaigns in pharmaceutical companies have accumulated a large amount of data for several million compounds over a couple of hundred assays. Despite the general awareness that rich information is hidden inside the vast amount of data, little has been reported for a systematic data mining method that can reliably extract relevant knowledge of interest for chemists and biologists. We developed a data mining approach based on an algorithm called ontology-based pattern identification (OPI) and applied it to our in-house HTS database. We identified nearly 1500 scaffold families with statistically significant structure-HTS activity profile relationships. Among them, dozens of scaffolds were characterized as leading to artifactual results stemming from the screening technology employed, such as assay format and/or readout. Four types of compound scaffolds can be characterized based on this data mining effort: tumor cytotoxic, general toxic, potential reporter gene assay artifact, and target family specific. The OPI-based data mining approach can reliably identify compounds that are not only structurally similar but also share statistically significant biological activity profiles. Statistical tests such as Kruskal-Wallis test and analysis of variance (ANOVA) can then be applied to the discovered scaffolds for effective assignment of relevant biological information. The scaffolds identified by our HTS data mining efforts are an invaluable resource for designing SAR-robust diversity libraries, generating in silico biological annotations of compounds on a scaffold basis, and providing novel target family specific scaffolds for focused compound library design.  相似文献   

7.
We present an approach to customize the sample submission process for high-throughput purification (HTP) of combinatorial parallel libraries using preparative liquid chromatography electrospray ionization mass spectrometry. In this study, Visual Basic and Visual Basic for Applications programs were developed using Microsoft Visual Basic 6 and Microsoft Excel 2000, respectively. These programs are subsequently applied for the seamless electronic submission and handling of data for HTP. Functions were incorporated into these programs where medicinal chemists can perform on-line verification of the purification status and on-line retrieval of postpurification data. The application of these user friendly and cost effective programs in our HTP technology has greatly increased our work efficiency by reducing paper work and manual manipulation of data.  相似文献   

8.
Accurate results for the testing of combinatorial libraries necessitates high purity of the library members. Therefore, combinatorial libraries derived from a combinatorial solution or solid-phase synthesis often require the purification of compounds that do not achieve a certain purity threshold. This study describes that preparative high-performance liquid chromatography (HPLC)-mass spectrometry (MS) is the method of choice for the purification of large arrays of diverse compounds. The adoption of this technology to the workflow of a solution phase combinatorial chemistry laboratory producing more than 20,000 compounds per year is described. Furthermore, the setup and logistics are discussed as well as the purity achievable for large libraries. Efficiency, speed, quality, and universality of preparative HPLC-MS are presented in detail for a library of 140 compounds, including data logistics and downstream processes as well.  相似文献   

9.
We have developed a high-throughput purification system to purify combinatorial libraries at a 50-100-mg scale with a throughput of 250 samples/instrument/day. We applied an accelerated retention window method to shorten the purification time and targeted one fraction per injection to simplify data tracking, lower QC workload, and simplify the postpurification processing. First, we determined the accurate retention time and peak height for all compounds using an eight-channel parallel LC/UV/MS system, and calculated the specific preparative HPLC conditions for individual compounds. The preparative HPLC conditions include the compound-specific gradient segment for individual compounds with a fixed gradient slope and the compound-specific UV or ELSD threshold for triggering a fraction collection device. A unique solvent composition or solvent strength was programmed for each compound in the preparative HPLC in order to elute all compounds at the same target time. Considering the possible deviation of the predicted retention time, a 1-min window around the target time was set to collect peaks above a threshold based on UV or ELSD detection. Dual column preparative instruments were used to maximize throughput. We have purified more than 500 000 druglike compounds using this system in the past 3 years. We report various components of this high-throughput purification system and some of our purification results.  相似文献   

10.
The development and use of a new assay system for the simultaneous determination of identity, purity, and concentration of sample components from combinatorial libraries produced by parallel synthesis are described. The system makes use of high-performance liquid chromatography with UV/vis photodiode array (PDA), evaporative light scattering (ELSD), chemiluminescent nitrogen (CLND), and time-of-flight mass spectrometer (TOFMS) detectors (HPLC-PDA-ELSD-CLND-TOFMS). Although these detectors have previously been utilized separately for the analysis of combinatorial chemistry libraries, the use of TOFMS along with CLND provides a synergistic combination enabling target and side-product structures to be identified and their concentrations and purities determined in a single experiment from a solution containing microgram levels of material. The CLND was found to give a linear response based on the number of moles of nitrogen present. Therefore, if the number of nitrogens per molecule is known, the concentration of each nitrogen-containing sample component may be determined utilizing an unrelated co-injected standard. A molecular formula for an impurity may often be calculated from the exact mass determined by the TOFMS and knowledge of the chemistry involved. Thus, if the sample components contain nitrogen, the concentration of every identified HPLC peak may be determined even in the absence of primary standards. This combination of detectors enabled the characterization of both target compounds and byproducts in combinatorial libraries, allowing the optimization of library synthetic procedures. This system was also used to survey the quality of libraries, enabling the selection of the best libraries for screening. This method also facilitated the characterization of samples from combinatorial libraries found as hits in high-throughput screening to establish the potency of the leads based on their actual concentration. In addition, concentrations and potencies of impurities were determined after identification of their structures, utilizing exact mass data, determination of charge states, and knowledge of the synthetic chemistry.  相似文献   

11.
To screen one-bead-one-compound (OBOC) combinatorial bead libraries,(1) one generally uses tagged purified protein as the screening probe. Compound beads that interact with the purified protein are then identified, for example, via an enzyme-linked colorimetric assay, and isolated for structure determination. In this report, we demonstrate a rapid and efficient method to screen OBOC combinatorial libraries utilizing two protein mixtures as screening probes, and by comparing optical images of the beads stained by one protein mixture but not the other, ligand beads unique to one of the two protein mixtures can be identified. The significance of this method is that it allows for rapid selection of ligands directed against proteins unique to one mixture while screening out positive beads resulting from proteins common to both mixtures as well as beads that are positive as a result of interactions with chemical and protein components found in the assay itself. The method is fast, efficient, and uses off-the-shelf equipment.  相似文献   

12.
C1 Nitrogen iminocyclitols are potent inhibitors of N-acetyl-beta-hexosaminidases. Given hexosaminidases' important roles in osteoarthritis, we developed two straightforward and efficient syntheses of C1 nitrogen iminocyclitols from two readily available starting materials, D-mannosamine hydrochloride and the microbial oxidation product of fructose. A diversity-oriented synthetic strategy was then performed by coupling these core structures with various aldehydes, carboxylic acids, and alkynes to generate three separate libraries. High-throughput screening of the generated libraries with human N-acetyl-beta-hexosaminidases produced only moderate inhibitory activities. However, the synthetic approach and screening strategy for these compounds will be applied to develop new potent inhibitors of human N-acetyl-beta-hexosaminidases, particularly when combined with the structural information of these enzymes.  相似文献   

13.
In the demanding field of proteomics, there is an urgent need for affinity-catcher molecules to implement effective and high throughput methods for analysing the human proteome or parts of it. Antibodies have an essential role in this endeavour, and selection, isolation and characterisation of specific antibodies represent a key issue to meet success. Alternatively, it is expected that new, well-characterised affinity reagents generated in rapid and cost-effective manners will also be used to facilitate the deciphering of the function, location and interactions of the high number of encoded protein products. Combinatorial approaches combined with high throughput screening (HTS) technologies have become essential for the generation and identification of robust affinity reagents from biological combinatorial libraries and the lead discovery of active/mimic molecules in large chemical libraries. Phage and yeast display provide the means for engineering a multitude of antibody-like molecules against any desired antigen. The construction of peptide libraries is commonly used for the identification and characterisation of ligand-receptor specific interactions, and the search for novel ligands for protein purification. Further improvement of chemical and biological resistance of affinity ligands encouraged the "intelligent" design and synthesis of chemical libraries of low-molecular-weight bio-inspired mimic compounds. No matter what the ligand source, selection and characterisation of leads is a most relevant task. Immunological assays, in microtiter plates, biosensors or microarrays, are a biological tool of inestimable value for the iterative screening of combinatorial ligand libraries for tailored specificities, and improved affinities. Particularly, enzyme-linked immunosorbent assays are frequently the method of choice in a large number of screening strategies, for both biological and chemical libraries.  相似文献   

14.
Using a data set comprised of literature compounds and structure-activity data for cyclin dependent kinase 2, several pharmacophore hypotheses were generated using Catalyst and evaluated using several criteria. The two best were used in retrospective searches of 10 three-dimensional databases containing over 1,000,000 proprietary compounds. The results were then analyzed for the efficiency with which the hypotheses performed in the areas of compound prioritization, library prioritization, and library design. First as a test of their compound prioritization capabilities, the pharmacophore models were used to search combinatorial libraries that were known to contain CDK active compounds to see if the pharmacophore models could selectively choose the active compounds over the inactive compounds. Second as a test of their utility in library design again the pharmacophore models were used to search the active combinatorial libraries to see if the key synthons were over represented in the hits from the pharmacophore searches. Finally as a test of their ability to prioritize combinatorial libraries, several inactive libraries were searched in addition to the active libraries in order to see if the active libraries produced significantly more hits than the inactive libraries. For this study the pharmacophore models showed potential in all three areas. For compound prioritization, one of the models selected active compounds at a rate nearly 11 times that of random compound selection though in other cases models missed the active compounds entirely. For library design, most of the key fragments were over represented in the hits from at least one of the searches though again some key fragments were missed. Finally, for library prioritization, the two active libraries both produced a significant number of hits with both pharmacophore models, whereas none of the eight inactive libraries produced a significant number of hits for both models.  相似文献   

15.
Supported peptide and drug-like organic molecule libraries were profiled in single nondestructive imaging static secondary ion mass spectrometric experiments. The selective rupture of the bond linking the compound and the insoluble polymeric support (resin) produced ions that were characteristic of the anchored molecules, thus allowing unambiguous resin bead assignment. Very high sensitivity and specificity were obtained with such a direct analytical method, which avoids the chemical release of the molecules from the support. Libraries issued from either mix-and-split or parallel solid-phase organic syntheses were profiled, demonstrating the usefulness of such a technique for characterization and optimization during combinatorial library development. Moreover, the fact that the control was effected at the bead level whatever the structure and quantity of the anchored molecules allows the sole identification of active beads selected from on-bead screening. Under such circumstances, the time-consuming whole-library characterization could thus be suppressed, enhancing the throughput of the analytical process.  相似文献   

16.
The technologies for screening peptide and protein libraries for studies in the fields of directed protein evolution and functional genomics have advanced with astonishing speed. For screening of functional proteins, three technologies are required: (i) the construction of a gene library (genotype), (ii) the establishment of a linkage between each protein (phenotype) and its encoding gene (genotype), and (iii) the selection of desired proteins (phenotype) from the library. This review highlights the genotype-phenotype linkage technologies, which can be classified into three types; that is, cell-type linkage, virus-type linkage, and array-type linkage methods. These methods are summarized, and their advantages and disadvantages are discussed.  相似文献   

17.
Combinatorial strategies are for the first time applied in membrane technology and prove to be a powerful new tool in the search for novel membrane materials. The selected system for this study is a polyimide solvent-resistant nanofiltration membrane prepared via phase inversion. The phase inversion process is a typical membrane synthesis procedure involving a large number of compositional components, which can each be varied in a wide concentration range. The optimization of the membrane dope composition was performed using evolutionary optimization via genetic algorithms. Compared with the best commercially available membranes, a substantially improved membrane performance could be realized, both on the level of membrane selectivity and on that of permeability. The miniaturized high-throughput synthesis procedure could be scaled up successfully when the polymer dope was sufficiently viscous. It can be anticipated that application of combinatorial techniques can potentially lead to major improvements in all fields of membrane technology, for example water treatment, gas separation, and dialysis, not only on the compositional level but also for instance on the level of membrane synthesis posttreatment and operational conditions.  相似文献   

18.
A maximum-seeking, algorithm-driven fraction collection method was developed to support high-throughput chromatographic purification, which provides new possibilities for off-line high-performance liquid chromatography mass spectroscopy (HPLC/MS) quality control experiments. The method is based on manipulation of a six-port valve that is installed downstream from the UV detector and equipped with a fraction collector loop. The detector signal is monitored by a programmable microcontroller that controls the state of the fraction collector valve. After detecting a chromatographic peak, the appropriate fraction is stored in the collector loop. The height of the next peak is compared to the previous one (using a maximum-seeking algorithm) and, depending on the result, the collected fraction is or is not exchanged with the new one. At the end of the run, the stored UV main component is pumped into the external fraction vial. This configuration was used for chromatographic purification of large compound libraries (the results of the purification of 5324 compounds are reported here), as well as for high-throughput off-line HPLC quality control experiments, where the collected main component fractions of an analytical-scale separation were subjected to further mass spectrometric molecular weight verification.  相似文献   

19.
One of the key elements in the drug discovery process is the use of automation to synthesize libraries of compounds for biological screening. The "split-and-mix" approaches in combinatorial chemistry have been recognized as extremely powerful techniques to access large numbers of compounds, while requiring only few reaction steps. However, the need for effective encoding/deconvolution strategies and demands for larger amounts of compounds have somewhat limited the use of these techniques in the pharmaceutical industry. In this paper, we describe a concept of directed sort and combine synthesis with spatially arranged arrays of macroscopic supports. Such a concept attempts to balance the number of reaction steps, the confidence in compound identity, and the quantity of synthesized compounds. Using three-dimensional arrays of frames each containing a two-dimensional array of macroscopic solid supports, we have conceptualized and developed a modular semiautomated system with a capacity of up to 100 000 compounds per batch. Modularity of this system enables flexibility either to produce large diverse combinatorial libraries or to synthesize more focused smaller libraries, both as single compounds in 12-15 micromol quantities. This method using sortable and spatially addressed arrays is exemplified by the synthesis of a 15 360 compound library.  相似文献   

20.
The most desirable compound leads from high-throughput assays are those with novel biological activities resulting from their action on a single biological target. Valuable resources can be wasted on compound leads with significant 'side effects' on additional biological targets; therefore, technical refinements to identify compounds that primarily have effects resulting from a single target are needed. This study explores the use of multiple assays of a chemical library and a statistic based on entropy to identify lead compound classes that have patterns of assay activity resulting primarily from small molecule action on a single target. This statistic, called the coincidence score, discriminates with 88% accuracy compound classes known to act primarily on a single target from compound classes with significant side effects on nonhomologous targets. Furthermore, a significant number of the compound classes predicted to have primarily single-target effects contain known bioactive compounds. We also show that a compound's known biological target or mechanism of action can often be suggested by its pattern of activities in multiple assays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号