首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A strongly nonlinear equation describing the dynamics of pulsations in solid fuel combustion is obtained. The method consists of extending the problem via introduction of an artificial parameter into boundary conditions leading to a separation of the spatial and the temporal scales within a low-frequency region. The interface dynamics equation obtained through an asymptotic expansion is then extrapolated toward the original values of parameters. The key point in the derivation is to restore the unexpected form of the principal nonlinearity generating a strongly dissipative region near a stagnation point of the front which is responsible for the stability of pulsations. The results of a numerical simulation of the equation demonstrate strongly relaxational stable oscillations of the flame front velocity.  相似文献   

2.
We demonstrate the generation of broadband continuous-wave optical squeezing from 280 Hz-100 kHz using a below-threshold optical parametric oscillator (OPO). The squeezed state phase was controlled using a noise locking technique. We show that low frequency noise sources, such as seed noise, pump noise, and detuning fluctuations, present in optical parametric amplifiers, have negligible effect on squeezing produced by a below-threshold OPO. This low frequency squeezing is ideal for improving the sensitivity of audio frequency measuring devices such as gravitational-wave detectors.  相似文献   

3.
We use direct and stochastic numerical simulations of the magnetohydrodynamic equations to explore the influence of turbulence on the dynamo threshold. In the spirit of the Kraichnan-Kazantsev model, we model the turbulence by a noise, with given amplitude, injection scale, and correlation time. The addition of a stochastic noise to the mean velocity significantly alters the dynamo threshold and increases it for any noise at large scale. For small-scale noise, the result depends on its correlation time and on the magnetic Prandtl number.  相似文献   

4.
The various general perturbational schemes for continuous stochastic equations are considered. These schemes have many analogous features with the iterational solution of Schwinger equation for S-matrix. The following problems are discussed: continuous stochastic evolution equations for probaibility distribution functionals, evolution equations for equal time correlators, perturbation theory for Gaussian and Poissonian additive noise, perturbation theory for birth and death processes. stochastic properties of systems with multiplicative noise. The general results are illustrated by diffusion - controlled reactions, fluctuations in closed systems with chemical processes, propagation of waves in random media in parabolic equation approximation, and nonequilibrium phase transitions in systems with Poissonian breeding centers. The rate of irreversible reaction X + XA (Smoluchowski process) is calculated with the use of general theory based on continuous stochastic equations for birth and death processes. The threshold criterion and range of fluctuational region for synergetic phase transition in system with Poissonian breeding centers are also considered.  相似文献   

5.
Experimental investigation of fluctuation dynamics in critical and transitional modes of heat mass exchange shows existence of irregular high-energy pulsations with power spectrum inversely proportional to the frequency—so called 1/f spectrum. Such regimes are characterized by the fact that an essential part of the pulsations energy is connected with very slow processes and mean that large high-energy bursts are possible in the system. Another characteristic feature of such regimes is scale invariance of the fluctuations distribution function. According to the theory, the 1/f fluctuations can emerge in physical systems due to simultaneous phase transitions in presence of sufficiently intensive white noise. This paper is devoted to detailed investigation of relaxation processes at steadying of stationary stochastic process in non-equilibrium phase transitions in system of two nonlinear stochastic differential equation. Such an information reveals statistical patterns of particular large-scale low-frequency bursts. Discontinuous “forgetting” of the initial conditions takes place. It is shown by numerical methods that distributions of duration and maximal values of the low-frequency extreme bursts have the power-like form. Experimental investigation results of statistical characteristics of fluctuation processes at ultrasonic cavitation and flash boiling of overheated water jets are presented. Results of the experiments carried out fit conclusions of the theoretical model for interacting heterogeneous phase transitions.  相似文献   

6.
This work studies the spatio-temporal dynamics of a generic integral-differential equation subject to additive random fluctuations. It introduces a combination of the stochastic center manifold approach for stochastic differential equations and the adiabatic elimination for Fokker-Planck equations, and studies analytically the systems’ stability near Turing bifurcations. In addition two types of fluctuation are studied, namely fluctuations uncorrelated in space and time, and global fluctuations, which are constant in space but uncorrelated in time. We show that the global fluctuations shift the Turing bifurcation threshold. This shift is proportional to the fluctuation variance. Applications to a neural field equation and the Swift-Hohenberg equation reveal the shift of the bifurcation to larger control parameters, which represents a stabilization of the system. All analytical results are confirmed by numerical simulations of the occurring mode equations and the full stochastic integral-differential equation. To gain some insight into experimental manifestations, the sum of uncorrelated and global additive fluctuations is studied numerically and the analytical results on global fluctuations are confirmed qualitatively.  相似文献   

7.
The renormalized Fokker-Planck equation for a dye laser is derived from the Liouvillevon Neuman equation and its stationary solution, as well as the numerically calculated line shapes and the noise spectra for the quantum threshold region are given. The calculations were performed for values of the laser parameters which enable to compare the semiclassical bistable solutions with the threshold and those without the threshold. A difference in the behavior of the line shapes in the threshold region for both cases are discussed.  相似文献   

8.
The finite difference method is used to solve the task of the developed pulsating laminar flow in a rectangular channel. The optimum of the difference scheme parameters was determined. Data on the amplitude and phase of the longitudinal velocity oscillations, the hydraulic and friction drag coefficients, the shear stress on the wall have been obtained. Using the dimensionless value of the frequency pulsations two characteristic regimes — the quasisteady-state regime and the high-frequency regime have been identified. In the quasi-steady-state regime, the values of all hydrodynamic quantities at each instant of time correspond to the velocity value averaged over the cross section at a given moment of time. It is shown that in the high-frequency regime, the dependences on the dimensionless oscillation frequency of oscillating components of hydrodynamic quantities are identical for rectilinear channels with a different cross-sectional form (round pipe, flat and a rectangular channels). The effect of the aspect ratio of the rectangular channel sides channel on the pulsating flow dynamics has been analyzed.  相似文献   

9.
The objective of this work is to simulate the flow noise of a vector sensor embedded in a flexible towed array. The mathematical model developed, based on long-wavelength analysis of the inner space of a cylindrical multipole source, predicts the reduction of the flow noise of a vector sensor embedded in an underwater flexible towed array by means of intensimetric processing (cross-spectral density calculation of oscillatory velocity and sound-pressure-sensor responses). It is found experimentally that intensimetric processing results in flow noise reduction by 12-25 dB at mean levels and by 10-30 dB in fluctuations compared to a squared oscillatory velocity channel. The effect of flow noise suppression in the intensimetry channel relative to a squared sound pressure channel is observed, but only for frequencies above the threshold. These suppression values are 10-15 dB at mean noise levels and 3-6 dB in fluctuations. At towing velocities of 1.5-3 ms(-1) and an accumulation time of 98.3 s, the threshold frequency in fluctuations is between 30 and 45 Hz.  相似文献   

10.
The influence of combustion effect on unsteady vortex structure in the form of precessing vortex core was studied using the non-intrusive method of laser Doppler anemometry and special procedure of extracting the non-axisymmetric mode of flow fluctuations. The studies show that combustion has a significant effect on the parameters of such a core, reducing the amplitude (vortex deviation from the burner center) and increasing precession frequency. At the same time, the acoustic sensors detect almost an order reduction in the level of pressure pulsations generated by the precessing vortex core. Moreover, distributions of tangential velocity fluctuations and cross-correlation analysis show that vortex precession is quite pronounced even under the combustion conditions, bringing a significant coherent component to distributions of velocity fluctuations.  相似文献   

11.
The effect of additive noise on a static front that connects a stable homogeneous state with an also stable but spatially periodic state is studied. Numerical simulations show that noise induces front propagation. The conversion of random fluctuations into direct motion of the front's core is responsible of the propagation; noise prefers to create or remove a bump, because the necessary perturbations to nucleate or destroy a bump are different. From a prototype model with noise, we deduce an adequate equation for the front's core. An analytical expression for the front velocity is deduced, which is in good agreement with numerical simulations.  相似文献   

12.
《Physica A》1988,154(1):34-60
The asymptotic dynamics of the percolation model for a bond disordered lattice is studied. The velocity autocorrelation function (VACF) is investigated for arbitrary concentration of disorder in two and three dimensions using an effective medium approximation (EMA). Corrections to the long time tails away from the percolation threshold and to the percolation tails at the threshold are calculated. A characteristic time scale for the long time tails is identified and found to diverge at the threshold. Sufficiently close to the threshold the two types of asymptotic dynamics can be identified clearly for times greater than and less than this characteristic time, respectively. An approximate scaling of the EMA equation is obtained near the threshold for investigation of the crossover region. More generally, the EMA equation is solved numerically for arbitrary concentration in two dimensions to exhibit the complete time dependence of the VACF in all domains near and far from the threshold.  相似文献   

13.
Broadband noise on supercontinuum spectra generated in microstructure fiber is shown to lead to amplitude fluctuations as large as 50% for certain input laser pulse parameters. We study this noise using both experimental measurements and numerical simulations with a generalized stochastic nonlinear Schr?dinger equation, finding good quantitative agreement over a range of input-pulse energies and chirp values. This noise is shown to arise from nonlinear amplification of two quantum noise inputs: the input-pulse shot noise and the spontaneous Raman scattering down the fiber.  相似文献   

14.
The influence of spatio-temporal external multiplicative fluctuations on a single kink in a bistable distributed system is studied. For this purpose we derive a stochastic dynamic equation for the position of the shifted kink. An analytical estimate for spatio-temporally uncorrelated fluctuations is represented and discussed. We draw the conclusion that multiplicative noise induces a propagation of the most probable kink into the region of larger noise. This effect is demonstrated in numerical simulations.  相似文献   

15.
16.
A model of the low-frequency fluctuations of the oscillations of an LSA generator produced by accumulation and distribution of space-charge perturbations which occur at local micrononuniformities in the structure of the working region of a Gunn diode is proposed. Flicker fluctuations of the parameters of the nonuniformities are regarded as the primary source of noise. Expressions are obtained for the power spectra of the amplitude-frequency noise of the output signal. The dependence of the noise level on the bias field applied to the diode is analyzed and numerical estimates are given.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 27, No. 1, pp. 79–86, January, 1984.  相似文献   

17.
利用广义伪谱方法精确数值求解了氢原子在强激光场中的三维含时薛定谔方程,获得了强激光中氢原子的含时波函数,利用时间依赖的偶极矩的傅里叶变换得到了高次谐波谱,研究了氢原子在强激光场中发射低于电离阈值的谐波谱对激光强度的依赖性.研究发现,激光强度在低于电离阈值的谐波产生的通道选择的过程中扮演着重要角色,主要有两种量子通道对阈下谐波的产生有贡献,即广义的短轨道和长轨道,其中长轨道对激光场强度比较敏感.结合小波时频变换、经典轨道分析、以及强度依赖的量子通道选择分析,本文阐明了其背后的物理机制.  相似文献   

18.
钟苏川  高仕龙  韦鹍  马洪 《物理学报》2012,61(17):170501-170501
通过将广义Langevin方程中的系统内噪声建模为分数阶高斯噪声,推导出分数阶Langevin方程, 其分数阶导数项阶数由系统内噪声的Hurst指数所确定.讨论了处于强噪声环境下的线性过阻尼分数阶 Langevin方程在周期信号激励下的共振行为,利用Shapiro-Loginov公式和Laplace变换, 推导了系统响应的一、二阶稳态矩和稳态响应振幅、方差的解析表达式.分析表明,适当参数下, 系统稳态响应振幅和方差随噪声的某些特征参数、周期激励信号的频率及系统部分参数的变化出现了 广义的随机共振现象.  相似文献   

19.
Investigation of the dynamics of fluctuations of heat and mass transfer reveals that its crisis and transient modes exhibit high-energy pulsations with a power spectrum that is inversely proportional to frequency (flicker or 1/f fluctuations). Such a spectrum suggests energy transfer from high-to low-frequency modes and the possibility of large-scale catastrophic outbursts in the system being considered. The theory shows that such fluctuations arise in the system owing to the simultaneous occurrence of interacting phase transitions in the presence of white noise having a sufficiently high intensity. The distribution of fluctuations for scale transformations of the set of stochastic equations that describe the generation of 1/f noise is investigated. It is shown that, under a scale transformation, the Gaussian distribution of a random process having a 1/f spectrum passes to an exponential distribution, which is characteristic of the statistics of extreme outbursts. The probability of such outbursts must be taken into account in predicting the stability of various heat-transfer modes.  相似文献   

20.
Fully developed turbulent pipe flows of power-law fluids are studied by means of direct numerical simulation. Two series of calculations at generalised Reynolds numbers of approximately 10000 and 20000 were carried out. Five different power law indexes n from 0.4 to 1 were considered. The distributions of components of Reynolds stress tensor, averaged viscosity, viscosity fluctuations, and measures of turbulent anisotropy are presented. The friction coefficient predicted by the simulations is in a good agreement with the correlation obtained from experiment. Flows of power-law fluids exhibit stronger anisotropy of the Reynolds stress tensor compared with the flow of Newtonian fluid. The turbulence anisotropy becomes more significant with the decreasing flow index n. An increase in apparent viscosity away from the wall leads to the damping of the wall-normal velocity pulsations. The suppression of the turbulent energy redistribution between the Reynolds stress tensor components observed in the simulations leads to a strong domination of the axial velocity pulsations. The damping of wall-normal velocity pulsations leads to a reduction of the fluctuating transport of momentum from the core toward the wall, which explains the effect of drag reduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号