首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nonisothermal Couette flow has been studied in a number of papers [1–11] for various laws of the temperature dependence of viscosity. In [1] the viscosity of the medium was assumed constant; in [2–5] a hyperbolic law of variation of viscosity with temperature was used; in [6–8] the Reynolds relation was assumed; in [9] the investigation was performed for an arbitrary temperature dependence of viscosity. Flows of media with an exponential temperature dependence of viscosity are characterized by large temperature gradients in the flow. This permits the treatment of the temperature variation in the flow of the fluid as a hydrodynamic thermal explosion [8, 10, 11]. The conditions of the formulation of the problem of the articles mentioned were limited by the possibility of obtaining an analytic solution. In the present article we consider nonisothermal Couette flows of a non-Newtonian fluid under the action of a pressure gradient along the plates. The equations for this case do not have an analytic solution. Methods developed in [12–14] for the qualitative study of differential equations in three-dimensional phase spaces were used in the analysis. The calculations were performed by computer.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp. 26–30, May–June, 1981.  相似文献   

2.
The Richards equation is widely used as a model for the flow of water in unsaturated soils. For modelling one-dimensional flow in a homogeneous soil, this equation can be cast in the form of a specific nonlinear partial differential equation with a time derivative and one spatial derivative. This paper is a survey of recent progress in the pure mathematical analysis of this last equation. The emphasis is on the interpretation of the results of the analysis. These are explained in terms of the qualitative behaviour of the flow of water in an unsaturated soil which is described by the Richards equation.Nomenclature a coefficient in second-order diffusion term of equation - b coefficient in first-order advection term of equation - D soil-moisture diffusivity [L2T-1] - h pressure head [L] - H quarter-plane domain for Cauchy-Dirichlet problem [L] x [T] - K hydraulic conductivity scalar [LT–1] - K hydraulic conductivity tensor [LT–1] - q soil-moisture flux scalar [LT–1] - q soil-moisture flux vector [LT–1] - r dummy variable - R rectangle [L] x [T] - s dummy variable - s* representative value of dummy variable - S half-plane domain for Cauchy problem [L] x [T] - t time [T] - u unknown solution of partial differential equation - u0 initial-value function - v soil-moisture velocity scalar [LT–1] - v soil-moisture velocity vector [LT–1]  相似文献   

3.
A large number of papers, generalized and classified in [1, 2], have been devoted to unsteady gas flows arising in shock wave interaction. Experimental results [3–5] and theoretical analysis [6–9] indicate that the most interesting and least studied types of interaction arise in cases when there are several shock waves. At the same time, nonlinear effects, which depend largely on the nature of the shock wave intersections, become appreciable. Regions of existence of different types, of plane shock wave intersections have been analyzed in [10–13]. It has been shown that in a number of cases the simultaneous existence of different types of intersections is possible. The aim of the present paper is to study unsteady shock wave intersections in the framework of a numerical solution of the axisymmetric boundary-value problem that arises in the diffraction of a plane shock wave on a cone in a supersonic gas flow. Flow regimes that augment the experimental data of [3–5] and the theoretical analysis of [9] are considered.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 134–140, September–October, 1986.  相似文献   

4.
The flow from the tip of a needle electrode is caused by the Coulomb force acting on the space charge [1–3]. This charge is formed because of the dependence of the conductivity on the temperature, nonuniformity of which is due to Joule heating [1] and the electric field intensity [2] or processes near the electrode [3–5]. The present paper considers the stability of a dielectric liquid between spherical electrodes in order to elucidate the possibility of a thermoelectrohydrodynainic flow due to Joule heating. In the presence of external heating, the possibility of such a flow has been demonstrated both experimentally and theoretically [6–8].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 133–137, March–April, 1980.  相似文献   

5.
The authors consider problems connected with stability [1–3] and the nonlinear development of perturbations in a plane mixing layer [4–7]. Attention is principally given to the problem of the nonlinear interaction of two-dimensional and three-dimensional perturbations [6, 7], and also to developing the corresponding method of numerical analysis based on the application to problems in the theory of hydrodynamic stability of the Bubnov—Galerkin method [8–14].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhldkosti i Gaza, No. 1, pp. 10–18, January–February, 1985.  相似文献   

6.
At high supersonic flight speeds bodies with a star-shaped transverse and power-law longitudinal contour are optimal from the standpoint of wave drag [1–3]. In most of the subsequent experimental [4–6] and theoretical [6–9] studies only conical star-shaped bodies have been considered. For these bodies in certain flow regimes ascent of the Ferri point has been noted [10]. In [11] the boundary-value problem for elongated star-shaped bodies with a power-law longitudinal contour was solved for the case of supersonic flow. The present paper deals with the flow past these bodies at an angle of attack. It is found that for arbitrary star-shaped bodies with any longitudinal (in particular, conical) profile the aerodynamic forces can be reduced to a wave drag and a lift force, the lateral force on these bodies being equal to zero for any position of the transverse contour.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 135–141, November–December, 1989.  相似文献   

7.
The instability of a Kirchhoff vortex [1–3] with respect to three-dimensional perturbations is considered in the linear approximation. The method of successive approximations is applied in the form described in [4–6]. The eccentricity of the core is used as a small parameter. The analysis is restricted to the calculation of the first two approximations. It is shown that exponentially increasing perturbations of the same type as previously predicted and observed in rotating flows in vessels of elliptic cross section [4–9] appear even in the first approximation. As distinct from the case of plane perturbations [1-3], where there is a critical value of the core eccentricity separating the stable and unstable flow regimes, instability is predicted for arbitrarily small eccentricity.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 40–45, May–June, 1988.  相似文献   

8.
In the present study using the Newtonian approximation [1] we obtain an analytical solution to the problem of flow of a steady, uniform, hypersonic, nonviscous, radiating gas past a sphere. The three-dimensional radiative-loss approximation is used. A distribution is found for the gasdynamic parameters in the shock layer, the withdrawal of the shock wave and the radiant thermal flux to the surface of the sphere. The Newtonian approximation was used earlier in [2, 3] to analyze a gas flow with radiation near the critical line. In [2] the radiation field was considered in the differential approximation, with the optical absorption coefficient being assumed constant. In [3] the integrodifferential energy equation with account of radiation was solved numerically for a gray gas. In [4–7] the problem of the flow of a nonviscous, nonheat-conducting gas behind a shock wave with account of radiation was solved numerically. To calculate the radiation field in [4, 7] the three-dimensional radiative-loss approximation was used; in [5, 6] the self-absorption of the gas was taken into account. A comparison of the equations obtained in the present study for radiant flow from radiating air to a sphere with the numerical calculations [4–7] shows them to have satisfactory accuracy.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 6, pp. 44–49, November–December, 1972.In conclusion the author thanks G. A. Tirskii and É. A. Gershbein for discussion and valuable remarks.  相似文献   

9.
A comparative analysis of the results of physical [1–4] and mathematical experiments [5–8] is used to elucidate the mechanism of additional pressure lift at a Mach wavefront. The possibility and range of application of simplified flow models for the estimation of the pressure at certain characteristic points of the reflection surface (for example, a prism, a cylinder, or a sphere) was investigated.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 100–106, March–April, 1977.  相似文献   

10.
In [1–4] the laws of decay of the average and fluctuating velocities in momentumless turbulent wakes were experimentally investigated with and without swirl. In [5, 6] unswirled momentumless wakes and in [7] wakes with a nonzero angular momentum were theoretically investigated. However, turbulent wakes with zero momentum and angular momentum were not covered by these investigations. This class of flows is the subject of the present study.Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 5, pp. 35–41, September–October, 1993.  相似文献   

11.
Supersonic nonuniform gas flow over blunt bodies without surface injection has previously been investigated by both numerical [1–3] and experimental [3] methods. The processes of surface vaporization under the influence of an intense heat flux, artificial gas injection and surface combustion [4] are all worthy of study. The problem of the interaction between a nonuniform supersonic flow and a body in the presence of intense gas injection from the surface is examined and an analytical solution is constructed.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 126–134, November–December, 1989.  相似文献   

12.
Rheological equations of state of dilute suspensions of rigid ellipsoidal particles (ellipsoids of revolution) are derived [1–4] from the vantage point of the structural-continuum approach, with attention given both to rotational Brownian motion of particles and to their inertia and the outer force fields. Interaction between particles is ignored in those treatments given the low concentration of the suspended particles. In this paper, the earlier findings [1–4] are generalized to higher concentrations. The effect of hydrodynamical interaction between particles on the rheological behavior of the suspension is treated in the light of the Simha approach [5].Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 1, pp. 141–145, January–February, 1973.  相似文献   

13.
Experimental and industrial observations indicate a strong nonlinear dependence of the parameters of the flow processes in a fractured reservoir on its state of stress. Two problems with change of boundary condition at the well — pressure recovery and transition from constant flow to fixed bottom pressure — are analyzed for such a reservoir. The latter problem may be formulated, for example, so as not to permit closure of the fractures in the bottom zone. For comparison, the cases of linear [1] and nonlinear [2] fractured porous media and a fractured medium [3] are considered, and solutions are obtained in a unified manner using the integral method described in [1]. Nonlinear elastic flow regimes were previously considered in [3–6], where the pressure recovery process was investigated in the linearized formulation. Problems involving a change of well operating regime were examined for a porous reservoir in [7].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 67–73, May–June, 1991.  相似文献   

14.
The papers [1–5] are devoted to an investigation of aspects of the hydrodynamic interaction of cascades of profiles in a nonlinear formulation: it is shown experimentally in [1] and theoretically in [2] that the free vortex sheet ruptures upon meeting a profile; taking account of the evolution of vortex wakes, the flows around two cascades of solid profiles of infinitesimal [3] and finite [4] density are computed; results of an experimental investigation of the dynamic reactions of the flow on two mutually moving cascades of thin profiles are presented in [5]. The interference between two cascades of thin profiles in an inviscid, incompressible fluid flow is examined in this paper, where a modified method from [6] is used.Translated from Zhurnal Prikladnoi MekhaniM i Tekhnicheskoi Fiziki, No. 4, pp. 61–65, July–August, 1976.The author is grateful to D. H. Gorelov for discussing the research.  相似文献   

15.
When a plane shock wave impinges on bodies with grooves and when a supersonic stream of gas flows past such bodies a complicated flow pattern develops. In a number of cases oscillations of the bow wave [1–3] and an anomalous heating of the gas in the groove [4–6] have been observed. Unsteady reflection of shock waves from bodies with grooves and the processes occurring inside the grooves have been investigated comparatively little.Translated from Izvestiya Akademii Nauk SSSR, Hekhanika Zhidkosti 1 Gaza, No. 5, pp. 180–186, September–October, 1935.The authors wish to thank V. I. Ivanov for carrying out the calculations.  相似文献   

16.
Existing computational methods [1–5] do not enable one to calculate complex flows behind steps, accounting for nonuniformity of the incident supersonic flow and the effect of compression and expansion waves arriving in the near-wake region. For example, computational methods based on the methods of [1] or [2] are used mainly in uniform supersonic flow ahead of the base edge and, for the most part, cannot be used to calculate flow in annular nozzles with irregular conditions. An exception is reference [6], which investigated flow in an annular nozzle behind a cylindrical center-body. The present paper suggests a method, based on references [7, 8] for calculating the base pressure behind two-dimensional and three-dimensional steps, washed by a supersonic jet.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 6, pp. 43–51, November– December 1977.  相似文献   

17.
The present paper deals with the dynamic behaviour of a clamped beam subjected to a sub-tangential follower force at the free end. The aim of this work is to obtain the frequency–axial load relationship for a beam with a variable circular cross-section. In this way, one can identify both divergence critical loads – where the frequency goes to zero – and the flutter critical load – in correspondence with two frequencies coalescence. The numerical approach adopted for solving the partial differential equation of motion is the differential quadrature method (henceforth DQM). This method was proposed by Bellmann and Casti [Bellmann, R.E., Casti, J., 1971. Differential quadrature and long-term integration. J. Math. Anal. 34, 235–238] and has been employed recently in the solution of solid mechanics problems by Bert and Malik [Bert, C.W., Malik, M., 1996. Differential quadrature method in computational mechanics: a review. Appl. Mech. Rev., ASME, 49 (1), 1–28] and Chen et al. [Chen, W., Stritz, A.G., Bert, C.W., 1997. A new approach to the differential quadrature method for fourth-order equations. Int. J. Numer. Method Eng. 40, 1941–1956]. More precisely, a modified version of this method has been used, as proposed by De Rosa and Franciosi [De Rosa, M.A., Franciosi, C., 1998a. On natural boundary conditions and DQM. Mech. Res. Commun. 25 (3), 279–286; De Rosa, M.A., Franciosi, C., 1998b. Non classical boundary conditions and DQM. J. Sound Vibrat. 212(4), 743–748] to satisfy all the boundary conditions.Some frequencies–axial loads relationships are reported in order to show the influence of tapering on the critical loads.  相似文献   

18.
A paper [1] recently published in a scientific journal summed up a recently conducted set of studies [2, 4] on the optics of heterogeneous media. A number of fundamental statements of these studies require examination.Translated from Zhurnal Prikladnoi Mekhaniki Tekhnicheskoi Fiziki, No. 1, pp. 160–163, January–February, 1976.  相似文献   

19.
We propose an extension of the FENE-CR model for dilute polymer solutions [M.D. Chilcott, J.M. Rallison, Creeping flow of dilute polymer solutions past cylinders and spheres, J. Non-Newtonian Fluid Mech. 29 (1988) 382–432] and the Rouse-CCR tube model for linear entangled polymers [A.E. Likhtman, R.S. Graham, Simple constitutive equation for linear polymer melts derived from molecular theory: Rolie–Poly equation, J. Non-Newtonian Fluid Mech. 114 (2003) 1–12], to describe the nonequilibrium stretching dynamics of polymer chains in strong extensional flows. The resulting models, designed to capture the progressive changes in the average internal structure (kinked state) of the polymer chain, include an ‘effective’ maximum contour length that depends on local flow dynamics. The rheological behavior of the modified models is compared with various results already published in the literature for entangled polystyrene solutions, and for the Kramers chain model (dilute polymer solutions). It is shown that the FENE-CR model with an ‘effective’ maximum contour length is able to describe correctly the hysteretic behavior in stress versus birefringence in start-up of uniaxial extensional flow and subsequent relaxation also observed and computed by Doyle et al. [P.S. Doyle, E.S.G. Shaqfeh, G.H. McKinley, S.H. Spiegelberg, Relaxation of dilute polymer solutions following extensional flow, J. Non-Newtonian Fluid Mech. 76 (1998) 79–110] and Li and Larson [L. Li, R.G. Larson, Excluded volume effects on the birefringence and stress of dilute polymer solutions in extensional flow, Rheol. Acta 39 (2000) 419–427] using Brownian dynamics simulations of bead–spring model. The Rolie–Poly model with an ‘effective’ maximum contour length exhibits a less pronounced hysteretic behavior in stress versus birefringence in start-up of uniaxial extensional flow and subsequent relaxation.  相似文献   

20.
The exact solution of the problem of the deflection of an anisotropic plate weakened by an aperture is known only for the case in which the aperture has the shape of a circle or an ellipse [1, 2]. An exact solution has not been derived for any other aperture shapes. Approximate methods [3–6] which are widespread for the case of multiply connected anisotropic plates [7] are applied to the determination of the bending moments in an anisotropic plate near an aperture differing little from an elliptical or circular one.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 5, pp. 168–177, September–October, 1977.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号