首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
White light interferometer can be used to measure the amplitude extinction ratio (ER) of polarizer and coupling distribution in fiber. A LiNbO3 polarizer coupled with a polarization maintaining fiber and a silica planar waveguide at the two ends was measured using white light interferometer. According to the principles of optical coherence domain polarimeter (OCDP) technique, the test scheme is analyzed and presented to measure the ER of LiNbO3 polarizer with its apparatus proposed correspondingly. By analyzing the interference intensity, both the ER of LiNbO3 polarizer and its coupling crosstalk with optical fiber and waveguide are obtained. The results illustrate that the ER of a 5 mm-long LiNbO3 polarizer is 71 dB and the crosstalk of the coupling points are around 40 dB. The results have good agreement with analysis.  相似文献   

2.
The formation of optical planar waveguides in LiNbO3 and stoichiometric LiNbO3 crystals by proton exchange was reported. The prism-coupling method was used to characterize the dark-line spectroscopy at the wavelength of 633 and 1539 nm, respectively. The mode optical near-field outputs from proton-exchanged LiNbO3 and SLN waveguides at 633 nm were presented. The mode field from stoichiometric LiNbO3 (SLN) waveguide is lighter and more uniform than that from LiNbO3 waveguide, which means the quality of the waveguide in SLN crystal is better than that of the LiNbO3 waveguide. For proton-exchanged LiNbO3 waveguides, the evolution of the refractive index profile with annealing was presented. The disorder profiles of Nb atoms in proton-exchanged LiNbO3 waveguides were obtained by Rutherford backscattering/channeling technique. It is shown that the longer the exchange time, the larger the displacement of Nb atoms. Supported by the National Natural Science Foundation of China (Grant No. 10475052) and the Scientific Research Start-up Financing of Qufu Normal University  相似文献   

3.
All-optical tunable wavelength conversion of ps-pulses is proposed and experimentally demonstrated by use of cascaded sum- and difference frequency generation (cSFG/DFG) in a periodically poled LiNbO3 (PPLN) waveguide. The amplified spontaneous emission (ASE) noise is effectively suppressed by employing two tunable filters. As a result, tunable wavelength down- and up-conversions are simultaneously observed. The temporal evolutions of the signal, pump, control and idler waves propagating along the PPLN waveguide are simulated. From the temporal waveforms and optical spectra in the simulations, it is interesting to find that continuous wave (CW) pump and control are evolved into optical pulses during the cSFG/DFG nonlinear interactions. Moreover, some new sidebands in the output pump spectrum are observed both in the simulations and experiments.  相似文献   

4.
Starting with two dimensional, scalar wave equation, a variational equation was established for the fundamental TE and TM modes guided in Ti:LiNbO3 waveguides on the basis of assuming a symmetric Gaussian mode field function in the width direction and two-half Gaussian trial functions in the depth direction. The controllable waveguide fabrication parameters, including channel width, diffusion temperature, initial Ti-strip thickness and diffusion time, dependent of fundamental mode size, effective pump area, coupling efficiency between pump and laser modes, and the coupling loss between a Ti:LiNbO3 waveguide and a fiber were numerically calculated for Z-cut Er:Ti:LiNbO3 channel waveguide lasers at three possible emission wavelengths 1532,1563 and 1576 nm and two possible pump wavelengths 1480 and 980 nm. The calculated results were compared with those of Gaussian/Hermite–Gaussian mode field distribution in detail.  相似文献   

5.
A periodically poled titanium (Ti)-diffusion waveguide in near-stoichiometric MgO:LiNbO3 (SMgLN) was fabricated that exhibits a second harmonic generation (SHG) efficiency of 63%. The device shows very high resistance to photorefractive damage at room temperature. All optical wavelength conversion by difference frequency generation (DFG) has been demonstrated in a periodically poled SMgLN (PPSMgLN) with Ti-diffusion channel waveguides. The wavelength conversion efficiency was measured to be −7.3 dB with the pump power of 150 mW and the signal power of 50 mW at room temperature.  相似文献   

6.
Tunable wavelength conversion between picosecond pulses is demonstrated by exploiting cascaded secondorder nonlinearity in periodically poled LiNbO3 waveguides when the pump pulse with 40-GHz repetition rate and 7.5-ps pulse width is adopted. No external continuous-wave input is required in the proposed wavelength converter. The converted signal wavelength can be tuned from 1519 to 1562.6 nm as the lasing wavelength is changed from 1534.5 to 1572.1 nm.This revised version was published online in August 2005 with a corrected cover date.  相似文献   

7.
A new wavelength-tunable polarization converter utilizing the strain induced by proton exchange is demonstrated in x-cut LiNbO3. The light polarization is converted by the strain-optic effect through the phase-matched coupling of two orthogonal polarizations. The stress-applying structure is designed to be composed of several proton-exchanged strip regions for maximization of the stress distribution. The principle of birefringent chain filters is utilized to design the device structure in order to avoid the requirement of large stress, which results in serious cracks on the substrate surface. The overlap integral between the optical field distribution and the stress distribution can be enhanced simply by prolonging the proton-exchange time. Besides, the stress distribution and its strength in the stress-applying structure can be fine tuned without affecting the waveguide characteristics such that the principle of the birefringent chain filters is completely satisfied. Therefore, the polarization-conversion efficiency can be optimized when utilizing this exclusive stress-tuning ability. By the thermal-optic effect, the wavelength of maximum conversion can be tuned at a rate of -0.115 nm/°C with a maximum conversion efficiency of 92.41%. The proposed polarization converter has the advantages of adequate stress distribution and strength, high parameter-tuning feasibility, low propagation loss, easy fabrication, and low fabrication cost. PACS 42.82.-m  相似文献   

8.
We demonstrate a 1×4 waveguide array produced by an IR femtosecond laser in z-cut lithium niobate (LiNbO3). The polarization dependence of light coupling in this waveguide structure is experimentally investigated. The coupling constants of the waveguide array are obtained by measuring the ratio of output power of each waveguide for extraordinary rays and ordinary rays, and the variation of coupled power in each waveguide as a function of the waveguide length are demonstrated. PACS 42.65.Re; 77.84.Dy; 42.82.Et  相似文献   

9.
A tunable wavelength filter is designed using Ti:LiNbO3 asymmetric directional coupler. One arm of the directional coupler is made of continuous waveguide while the other arm is periodic segmented. This segmentation reduces the lithographic steps and hence the fabrication cost required for such asymmetric coupler based filter. The propagation constant of periodical segmented and continuous waveguides are analysed using Effective-Index-based Matrix Method. The tunability is achieved using electro-optic property of LiNbO3.  相似文献   

10.
The fabrication by diffusion doping and a detailed optical investigation of a Ti:Tm:LiNbO3 waveguide amplifier and of a Fabry‐Pérot type Ti:Tm:LiNbO3 laser are reported. Both devices are in‐band pumped by a laser diode at 1650 nm. The wave‐guide amplifier shows broad‐band optical gain in the wavelength range 1750 nm < λ < 1900 nm. The laser emits at 1890 nm, the longest emission wavelength of a Tm:LiNbO3 laser reported so far; also 1850 nm emission could be demonstrated. Laser threshold (1890 nm) is at 4 mW coupled pump power; the slope efficiency is ∼13.3%. Properties and potential of both devices are analyzed by extensive modeling.  相似文献   

11.
We demonstrate fine-wavelength tuning of a periodically poled Ti:LiNbO3 (Ti:PPLN) Šolc filter by use of the photorefractive (PR) effect. The center wavelength of a Ti:PPLN Šolc filter is controlled by the PR effect, which is induced by second-harmonic generation (SHG). The refractive index change caused by the PR effect is calculated from the measured shift in center wavelength from the Ti:PPLN Šolc filter. The experimental results show that all-optical fine-wavelength tuning in a Ti:PPLN Šolc filter is possible by the use of a second-order nonlinear effect and that a Ti:PPLN waveguide has much higher resistance to PR damage than a Ti:LiNbO3 waveguide. The measured wavelength tuning rate as a function of the pump beam power is about − 0.033 nm/mW.  相似文献   

12.
郭永娟  孙军强  王健  李婧 《物理学报》2007,56(8):4602-4607
在光纤环形腔激光器中引入周期极化反转铌酸锂(PPLN)光波导,用该激光器产生的连续光作为抽运光和控制光,使其与外加的信号光发生非线性效应实现可调谐波长转换.介绍了基于准相位匹配的PPLN光波导中的和频与差频级联型全光波长转换器的基本原理.对抽运光、信号光、控制光以及转换光的光功率随着PPLN光波导的变化进行了模拟.还对转换效率随着转换光波长的变化进行了数值计算.实验验证了该波长转换器的可调谐性. 关键词: 周期极化反转铌酸锂 和频与差频 可调谐全光波长转换 光纤环形腔激光器  相似文献   

13.
The near-infrared nonvolatile holographic recording has been realized in a doubly doped LiNbO3:Fe:Rh crystal by the traditional two-center holographic recording scheme, for the first time. The recording performance of this crystal has been investigated by recording with 633 nm red light, 752 nm red light and 799 nm near-infrared light and sensitizing with 405 nm purple light. The experimental results show that, co-doped with Fe and Rh, the near-infrared absorption and the photovoltaic coefficient of shallow trap Fe are enhanced in this LiNbO3:Fe:Rh crystal, compared with other doubly doped LiNbO3 crystals such as LiNbO3:Fe:Mn. It is also found that the sensitizing light intensity affects the near-infrared recording sensitivity in a different way than two-center holographic recording with shorter wavelength, and the origin of experimental results is analyzed.  相似文献   

14.
By holographic recording in LiNbO3-Fe and LiTaO3-Fe crystals a new light scattering effect has been observed with an optical indicatrix along the optical axis. The kinetics of the light scattering depends on the intensity, wavelength as well as the polarization of the incident light The holographic volume grating is created by the interference of an incident light and light scattered by crystal inhomogeneities.  相似文献   

15.
K. J. Zhou  X. L. Zhang 《Laser Physics》2010,20(6):1428-1432
We present a novel configuration of multiwavelength erbium-doped fiber ring laser (MW-EDFL) using a LiNbO3 multifunction chip for fiber gyros at room temperature. The polarizer incorporating a piece of high-birefringence fiber in the input port of the Y-type chip forms the Lyot periodic filter at intervals of 0.5 nm wavelength. One of two modulators inserted in the ring cavity has been used as frequency shifter by applying a sawtoothed signal, while the output port of the other is used as the output port of the laser. Simultaneous multiwavelength lasing is experimentally demonstrated by applying a sawtoothed signal with the order of 10 kHz to the phase modulator to prevent single-wavelength oscillation. The MW-EDFL output is linearly polarization light that meets the requirement of external modulation for wavelength-division-multiplexing applications.  相似文献   

16.
Optical second harmonic generation (SHG) in the form of Cerenkov radiation from ion-implanted lithium niobate (LiNbO3) channel waveguides is analyzed by directly resolving the wave equations. Useful formula of the SHG efficiency is derived and expressed in terms of waveguide parameters. Numerical examples are plotted for LiNbO3 crystals. The results enable the optimization of waveguide design for efficient second harmonic generation in the Cerenkov configuration.  相似文献   

17.
Two means of high speed optical sampling covering C band and L band based on sum frequency generation (SFG) in chirped periodically poled LiNbO3(CPPLN) waveguide are studied in this paper. For the first method, arbitrary waveband inside C and L band can be sampled by tuning pump wavelength and the bandwidth is controllable by choosing suitable waveguide length and chirped coefficient of CPPLN waveguide. For another, the broad bandwidth covering C band and L band can be obtained with a fixed pump. The numerical simulations based on coupled-wave equations are carried out. The NRZ sequences of 10 Gb/s and 640 Gb/s transmission rate are sampled in simulation. Distinct eye diagrams and quality factors (Q) are obtained by software-synchronized algorithm. The results show that the two means of the optical sampling both can cover C band and L band. SFG in CPPLN waveguide used for optical sampling system has a broad bandwidth and more flexible selectivity.  相似文献   

18.
In this work, CW laser operation of Tm3+-doped LiNbO3 channel waveguides has been modelled. The model is based on time dependent laser rate equations coupled with the laser signal and pump photon flux equations. Steady state solutions for the population densities, pump and signal powers are obtained by using finite difference discretization of the active volume. The effects of spectroscopic parameters such as concentration dependent cross-relaxation and excess waveguide loss have been analyzed. We demonstrate good agreement with experimental data previously reported in Zn-diffused LiNbO3:Tm3+ channel waveguide lasers. It is shown also that laser performance can be substantially improved by optimizing the cavity length.  相似文献   

19.
By sensitizing with 514 nm green light, 488 nm blue light and 390 nm ultraviolet light, respectively, recording with 633 nm red light, effect of wavelength of sensitizing light on holographic storage properties in LiNbO3:Fe:Ni crystal is investigated in detail. It is shown that by shortening the wavelength of sensitizing light gradually, nonvolatile holographic recording properties of oxidized LiNbO3:Fe:Ni crystal is optimized gradually, 390 nm ultraviolet light is the best as the sensitizing light. Considering the absorption of sensitizing light, to obtain the best performance in two-center holographic recording we must choose a sensitizing wavelength that is long enough to prevent unwanted absorptions (band-to-band, etc.) and short enough to result in efficient sensitization from the deep traps. So in practice a trade-off is always needed. Explanation is presented theoretically.  相似文献   

20.
We have investigated CHD2OH methanol as source of far-infrared (FIR) laser radiation using the optical pumping technique. Our new waveguide pulsed CO2 laser, with peak powers as high as some kW, has allowed us to observe 12 new lines. Each of them is characterized in wavelength, relative polarization, intensity, optimum operating pressure and pump offset from the center of the exciting CO2 line.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号