首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Intramolecular     
2-Propynyldiarylacetylenes undergo thermal intramolecular [4 + 2] cycloaddition to give benzo[b]fluorene derivatives in good yields. The hybridization of the tether connecting the reacting alkynes has a pronounced effect on the course of the reaction. Theoretical calculations and isotopic labeling studies support a mechanism which involves the generation of a cyclic allene intermediate that evolves to the final benzo[b]fluorene.  相似文献   

2.
[reaction: see text]This report describes intramolecular thermal [2 + 2] cycloadditions between ketenes and allenes. The formation of ketenes and the subsequent cycloadditions occurred under a variety of conditions, affording 7-methylidinebicyclo[3.2.0]heptanones and 7-methylidinebicyclo[3.1.1]heptanones in 45-78% yields. The regioselectivity of the cycloaddition varied with the substitution of the allene, and the yield of cyclized products varied with reaction conditions.  相似文献   

3.
1,3-Bis(methylseleno)- and 1,3-bis(benzylseleno)-1,3-diphenylpropadienes were synthesized by reaction of Ph(2)C(3) dianion, prepared from 1,3-diphenylpropyne and n-butyllithium, with dimethyl diselenide or benzylselenocyanate in the presence of TMEDA, and reaction of the dianion with a mixture of dimethyl diselenide and benzylselenocyanate yielded 1-benzylseleno-3-methylselenoallene along with the symmetric allenes. Diselenocyclic allenes and tetraselenocyclic bisallenes were also obtained by reacting the dianion with corresponding alkane diselenocyanates. The thermal reaction of the 1,3-bis(alkylseleno)allenes mainly afforded enediynes through radical pathway, and the nine-membered cyclic allene provided intramolecular cyclization product via an intramolecular rearrangement. Heating of the cyclic bisallenes gave compounds derived from intramolecular cyclization products together with a small amount of the enediynes. Irradiation of allenes caused rearrangement of the selenenyl group to give alkynes, and the alkynes also reacted photochemically to yield the enediynes.  相似文献   

4.
An intermolecular [2+2] cycloaddition reaction between an alkyne and an allene is reported. In the presence of a cobalt(I)/diphosphine catalyst, a near equimolar mixture of the alkyne and allene is converted into a 3‐alkylidenecyclobutene derivative in good yield with high regioselectivity. The reaction tolerates a variety of internal alkynes and mono‐ or disubstituted allenes bearing various functional groups. The reaction is proposed to involve regioselective oxidative cyclization of the alkyne and allene to form a 4‐alkylidenecobaltacyclopentene intermediate, with subsequent C?C reductive elimination.  相似文献   

5.
Brummond KM  Chen D 《Organic letters》2005,7(16):3473-3475
Microwave irradiation of alkynyl allenes affords an intramolecular [2 + 2] cycloaddition reaction. This cycloaddition provides an efficient route to bicyclomethylenecyclobutenes. The reaction occurs with complete regioselectivity for the distal double bond of the allene for the selective formation of a variety of hetero- and carbocyclic substrates. Bicyclo[4.2.0]octadienes and bicyclo[5.2.0]nonadienes have been prepared in high yield. [reaction: see text]  相似文献   

6.
Initial examples of the intermolecular Rh(I)-catalyzed [5+2] cycloaddition reaction of bifunctional allenes and vinylcyclopropanes are described. The reactions proceed with facility and in yields of up to 99% with a variety of alkyne-, ester-, styrene-, or cyano-substituents on the allene to afford the corresponding cycloadducts. In the presence of CO, the reaction proceeds to an eight-membered ring cycloadduct and its transannularly closed product, providing the first example of a three-component [5+2+1] cycloaddition with allenes.  相似文献   

7.
Erden I  Song J  Cao W 《Organic letters》2000,2(10):1383-1385
[equation--see text] The photooxidation of cyclic allenes gives rise to cyclic 1,2, 3-trione hydrates. The formation of these compounds points to a novel photooxidation mechanism involving both singlet and triplet oxygen. Upon placement of a methyl group on the allene, the mechanism shifts to predominantly an "ene" reaction. The corresponding cycloadditions with 4-methyl-1,3,4-triazoline-3, 5-dione (MTAD) with cyclic allenes involve 2 equiv of MTAD. The dipolar intermediates are trapped with H(2)O to give alpha-urazole-substituted 2-cycloalkenones.  相似文献   

8.
Diynes 1a-c [X(CH(2)Ctbd1;CCO(2)Me)(2): X = (CH(2))(2), 1a, X = CH(2), 1b and X = O, 1c] undergo [2 + 2 + 2] ene-diyne cycloaddition reactions with a variety of allenes (n-butylallene 2a, phenylallene 2b, (4-chlorophenyl)allene 2c, (4-bromophenyl)allene 2d, (3-methoxyphenyl)allene 2e, 1-naphthylallene 2f, cyclohexylallene 2g and cyclopentylallene 2h) in the presence of Ni(dppe)Br(2) and Zn powder in CH(3)CN at 80 degrees C for 8 h to give the corresponding polysubstituted benzene derivatives 4a-l in good to excellent yields. Under similar reaction conditions, unsymmetrical diynes 5a-c (HCtbd1;CCH(2)XCH(2)Ctbd1;CCO(2)Me) react with allenes 2 to afford exclusively the corresponding meta-isomers 6a-g in 73-86% yields. The catalytic reaction is highly regioselective and completely chemoselective. This synthetic method is compatible with many functional groups such as Cl, Br, and OMe on the phenyl group of the allene moiety and an ether linkage in a diyne moiety. In this catalytic reaction, allenes are synthetically equivalent to terminal alkynes. Interestingly, unsymmetrical diyne 7 (MeCtbd1;C(CH(2))(4)Ctbd1;CCO(2)Me) undergoes 2:1 cocyclotrimerization with allenes 2a and 2g to afford the corresponding polysubstituted benzene derivatives 9a,b in 87% and 82% yields, respectively. A plausible mechanism involving a nickelacycloheptadiene intermediate is proposed to account for this nickel-catalyzed reaction.  相似文献   

9.
[reaction: see text] A series of cyclic mono- and dichloroenediynes have been prepared using an intramolecular carbenoid coupling reaction. The halogen atom had a retardative effect on Bergman cycloaromatization in every case examined, and atom transfer chemistry was demonstrated, resulting in formation of adducts.  相似文献   

10.
Reported here are some rearrangements involving the electrocyclic ring closure of dieneynes 7. Such ring closures are envisaged to possibly give strained substituted cyclic allenes 8 which could also behave as diradicals 8a. The results show that compounds such as 5 rearrange to cyclohexadienones 9a, 9b, or 11 through these kind of intermediates. Theoretical calculations performed on simple models similar to the intermediates suggest that the nature of these intermediates correspond to that of cyclic allenes.  相似文献   

11.
The intramolecular [4C+3C] cycloaddition reaction of allenedienes catalysed by PtCl(2) and several Au(I) complexes has been studied by means of DFT calculations. Overall, the reaction mechanism comprises three main steps: (i) the formation of a metal allyl cation intermediate, (ii) a [4C(4π)+3C(2π)] cycloaddition that produces a seven-membered ring and (iii) a 1,2-hydrogen migration process on these intermediates. The reaction proceeds with complete diastereochemical control resulting from a favoured exo-like cycloaddition. Allene substituents have a critical influence in the reaction outcome and mechanism. The experimental observation of [4C+2C] cycloadducts in the reaction of substrates lacking substituents at the allene terminus can be explained through a mechanism involving Pt(IV)-metallacycles. With gold catalysts it is also possible to obtain [4C+2C] cycloaddition products, but only with substrates featuring terminally disubstituted allenes, and employing π-acceptor ligands at gold. However the mechanism for the formation of these adducts is completely different to that proposed with PtCl(2), and consists of the formation of a metal allyl cation, subsequent [4C+3C] cycloaddition and a 1,2-alkyl shift (ring contraction). Electronic analysis indicates that the divergent pathways are mainly controlled by the electronic properties of the gold heptacyclic species (L-Au-C(2)), in particular, the backdonation capacity of the metal center to the unoccupied C(2) (pπ-orbital) of the intermediate resulting from the [4C+3C] cycloaddition. The less backdonation, (i.e. using P(OR)(3)Au(+) complexes), the more favoured is the 1,2-alkyl shift.  相似文献   

12.
Chiral binuclear gold(I) phosphine complexes catalyze enantioselective intermolecular hydroarylation of allenes with indoles in high product yields (up to 90 %) and with moderate enantioselectivities (up to 63 % ee). Among the gold(I) complexes examined, better ee values were obtained with binuclear gold(I) complexes, which displayed intramolecular AuI AuI interactions. The binuclear gold(I) complex 4c [(AuCl)2( L3 )] with chiral biaryl phosphine ligand (S)‐(−)‐MeO‐biphep ( L3 ) is the most efficient catalyst and gives the best ee value of up to 63 %. Substituents on the allene reactants have a slight effect on the enantioselectivity of the reaction. Electron‐withdrawing groups on the indole substrates decrease the enantioselectivity of the reaction. The relative reaction rates of the hydroarylation of 4‐X‐substituted 1,3‐diarylallenes with N‐methylindole in the presence of catalyst 4c [(AuCl)2( L3 )] / AgOTf [ L3 =(S)‐(−)‐MeO‐biphep], determined through competition experiments, correlate (r2=0.996) with the substituent constants σ. The slope value is −2.30, revealing both the build‐up of positive charge at the allene and electrophilic nature of the reactive AuI species. Two plausible reaction pathways were investigated by density functional theory calculations, one pathway involving intermolecular nucleophilic addition of free indole to aurated allene intermediate and another pathway involving intramolecular nucleophilic addition of aurated indole to allene via diaurated intermediate E2 . Calculated results revealed that the reaction likely proceeds via the first pathway with a lower activation energy. The role of AuI AuI interactions in affecting the enantioselectivity is discussed.  相似文献   

13.
Isodesmic and homodesmic equations at the B3LYP/6-311+G(d,p)+ZPVE level of theory have been used to estimate strain for the homologous series of cyclic allenes and cyclic butatrienes. A simple fragment deformation approach also has been applied and appears to work better for the larger rings. For the cyclic allene series, estimates for allene functional group strain (kcal/mol) include: 1,2-cyclobutadiene, 65; 1,2-cyclopentadiene, 51; 1,2-cyclohexadiene, 32; 1,2-cycloheptadiene, 14; 1,2-cyclooctadiene, 5; 1,2-cyclononadiene, 2; 1,2,4-cyclohexatriene, 34; and bicyclo[3.2.1]octa-2,3-diene, 39. For cyclic butatrienes, functional group strain estimates include: 1,2,3-cyclobutatriene, >100; 1,2,3-cyclopentatriene, 80; 1,2,3-cyclohexatriene, 50; 1,2,3-cycloheptatriene, 26; 1,2,3-cyclooctatriene, 17; and 1,2,3-cyclononatriene, 4. Barriers to interconversion of enantiomers in cyclic allenes are reduced with increasing strain. Newly predicted values include: 1,2-cyclopentadiene <1 kcal/mol and bicyclo[3.2.1]octa-2,3-diene, 7.4 kcal/mol. Estimated levels of strain parallel the known reactivity of these substances.  相似文献   

14.
Allene–ene–allene ( 2 and 5 ) and allene–yne–allene ( 3 and 7 ) N‐tosyl and O‐linked substrates were satisfactorily synthesised. The [2+2+2] cycloaddition reaction catalysed by the Wilkinson catalyst [RhCl(PPh3)3] was evaluated. Substrates 2 and 5 , which bear a double bond in the central position, gave a tricyclic structure in a reaction in which four contiguous stereogenic centres were formed as a single diastereomer. The reaction of substrates 3 and 7 , which bear a triple bond in the central position, gave a tricyclic structure with a cyclohexenic ring core, again in a diastereoselective manner. All cycloadducts were formed by a regioselective reaction of the inner allene double bond and, therefore, feature an exocyclic diene motif. A Diels–Alder reaction on N‐tosyl linked cycloadducts 8 and 10 allowed pentacyclic scaffolds to be diastereoselectively constructed. The reactivity of the allenes on [2+2+2] cycloaddition reactions was studied for the first time by density functional theory calculations. This mechanistic study rationalizes the order in which the unsaturations take part in the catalytic cycle, the reactivity of the two double bonds of the allene towards the [2+2+2] cycloaddition reaction, and the diastereoselectivity of the reaction.  相似文献   

15.
The kinetics for the gas-phase reaction of phenyl radicals with allene has been measured by cavity ring-down spectrometry (CRDS), and the mechanism and initial product branching have been elucidated with the help of quantum-chemical calculations. The absolute rate constant measured by the CRDS technique can be expressed by the following Arrhenius equation: kallene (T=301-421 K)=(4.07+/-0.38)x10(11) exp[-(1865+/-85)/T] cm3 mol(-1) s(-1). Theoretical calculations, employing high level G2M energetic and IRCMax(RCCSD(T)//B3LYP-DFT) molecular parameters, indicate that under our experimental conditions the most preferable reaction channel is the addition of phenyl radicals to the terminal carbon atoms in allene. Predicted total rate constants agree with the experimental values within 40%. Calculated total and branching rate constants are provided for high-T kinetic modeling.  相似文献   

16.
Feng L  Kumar D  Birney DM  Kerwin SM 《Organic letters》2004,6(12):2059-2062
[reaction: see text] On the basis of density functional calculations, the isomerization of skipped azaenediynes (C-alkynyl-N-propargylimines) to azaenyne allenes and subsequent rapid aza-Myers-Saito cyclization to alpha,5-didehydro-3-picoline were predicted. We prepared the N-propargylimine of 1-phenyl-3-tri(isopropyl)silylprop-2-yn-1-one, which undergoes proto-desilylation and isomerization to an azaenyne allene when treated with tetrabutylammonium fluoride. In the presence of 1,4-cyclohexadiene, this azaenyne allene affords 6-phenyl-3-picoline and other products corresponding to the trapping of an alpha,5-didehydro-3-picoline diradical.  相似文献   

17.
[reactions: see text] A rhodium complex of N-heterocyclic carbene (NHC) has been developed for intra- and intermolecular [4 + 2] and intramolecular [5 + 2] cycloaddition reactions. This is the first use of a transition-metal NHC complex in a Diels-Alder-type reaction. For the intramolecular [4 + 2] cycloaddition reactions, all the dienynes studied were converted to their corresponding cycloadducts in 91-99% yields within 10 min. Moreover, up to 1900 turnovers have been obtained for the intramolecular [4 + 2] cycloaddition at 15-20 degrees C. For the intermolecular [4 + 2] cycloadditions, high yields (71-99%) of the corresponding cycloaddition products were obtained. The reaction time and yield were highly dependent upon the diene and the dienophile. For the intramolecular [5 + 2] cycloaddition reactions, all the alkyne vinylcyclopropanes studied were converted to their corresponding cycloadducts in 91-98% yields within 10 min. However, the catalytic system was not effective for an intermolecular [5 + 2] cycloaddition reaction.  相似文献   

18.
Lu X  Petersen JL  Wang KK 《Organic letters》2003,5(18):3277-3280
[reaction: see text] 1,3-Prototropic rearrangement of the benzannulated enyne-isonitriles to the corresponding enallene-isonitriles followed by cycloaromatization generated the putative quinoline biradicals/zwitterions. A subsequent intramolecular radical-radical coupling or electrophilic aromatic substitution then gave the formal [4 + 1] cycloaddition adducts leading to 11H-indeno[1,2-b]quinoline and related compounds.  相似文献   

19.
The gold-catalyzed intramolecular oxygen-transfer reactions of 2-alkynyl-1,5-diketones or 2-alkynyl-5-ketoesters-obtained from tetra-n-butylammonium fluoride mediated Michael addition of activated allenes to electron-deficient olefins-furnished cyclopentenyl ketones under very mild conditions. These reactions proceeded much easier and faster than similar reactions reported in literature, and the corresponding products were obtained in very good yields. Mechanistic investigations on the cycloisomerization were carried out by means of both (18) O isotopic experiments and quantum chemical calculations. The results from both, the designed isotopic experiments and theoretical calculations, satisfactorily supported the novel proposed intramolecular [4+2] cycloaddition of a gold-containing furanium intermediate to a carbonyl group, instead of the previous well-accepted [2+2] pathway.  相似文献   

20.
Ma S  Gao W 《Organic letters》2002,4(17):2989-2992
[reaction: see text] Substituent effects on the allene moiety and the N-protecting group were found to be the dominant factor in determining the reaction paths in the Pd(0)-catalyzed coupling-cyclization reaction of beta-amino allenes with organic halides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号