首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 558 毫秒
1.
姚凌江  王玲玲 《物理学报》2008,57(5):3100-3106
采用散射矩阵方法,研究了在应力自由和硬壁两种典型的边界条件下含半圆弧形腔的量子波导中声学声子输运和热导性质.结果表明在两种边界条件下声子透射谱和热导有着不同的特征.在应力自由边界条件下,能观察到普适的量子化热导现象,当结构为一理想的量子线时,在低温区域有一个量子化平台出现,而当半圆弧形结构存在时,非均匀横向宽度引发的弹性散射使得量子化平台被破坏;在硬壁边界条件下,不可能观察到量子化热导现象,热导随温度的增加单调上升;计算结果表明还可以通过调节半圆弧形结构的半径来调控声子的输运概率和热导. 关键词: 声学声子输运 热导 量子体系  相似文献   

2.
We investigate the thermal conductance in a quantum waveguide modulated with quantum dots at low temperatures. It is found that the thermal conductance sensitively depends on the geometrical parameters of the structure and boundary conditions. When the stress-free boundary conditions are applied in the structure, the universal quantum of thermal conductance can be found regardless of the geometry details in the limit T→0. For an uniform quantum waveguide, a thermal conductance plateau can be observed at very low temperatures; while for the quantum waveguide modulated with quantum dots, the plateau disappears, instead a decrease of the thermal conductance can be observed as the temperature goes up in the low temperature region, and its magnitude can be adjusted by the radius of the quantum dot. Moreover, it is found that the quantum waveguide with two coupling quantum dots exhibits oscillatory decaying thermal conductance behavior with the distance between two quantum dots. However, when the hard-wall boundary conditions are applied, the thermal conductance displays different behaviors.  相似文献   

3.
彭小芳  陈丽群  罗勇锋  刘凌虹  王凯军 《物理学报》2013,62(5):56805-056805
采用散射矩阵方法, 研究了含双T形量子结构的量子波导中声学声子输运和热导性质. 结果表明: 在极低温度, 双T形量子结构能增强低温热导; 相反地, 在相对较高的温度范围, 双T形量子结构能降低低温热导. 而在整个低温范围内, 增加散射区域最窄处的宽度能增强低温热导. 计算结果表明可以通过调节含双T形量子结构的量子波导结构来调控声子的输运概率和热导. 关键词: 声学声子输运 热导 量子结构  相似文献   

4.
《Physics letters. A》2006,359(3):234-240
Using the scattering-matrix method, we investigate the influences of boundary conditions on thermal conductance in quantum wire with structural defect. A comparison between the thermal conductances is made when stress-free, hard-wall, and mixed boundary conditions are applied for acoustic transport leads. The results show that the quantized thermal conductance plateau at very low temperature can be observed only in transport lead with stress-free boundary condition. For hard-wall or mixed boundary conditions, qualitatively different thermal conductance characteristics are found. Moreover, we find that the behavior of the thermal conductance sensitively depend on the geometric parameters and the position of the defect in quantum wire.  相似文献   

5.
We investigate the conductance of an InAs nanowire in the nonlinear regime in the case of low electron density where the wire is split into quantum dots connected in series. The negative differential conductance in the wire is initiated by means of a charged atomic force microscope tip adjusting the transparency of the tunneling barrier between two adjoining quantum dots. We confirm that the negative differential conductance arises due to the resonant tunneling between these two adjoining quantum dots. The influence of the transparency of the blocking barriers and the relative position of energy states in the adjoining dots on a decrease of the negative differential conductance is investigated in detail.  相似文献   

6.
《Physics letters. A》2014,378(30-31):2195-2200
We study the ballistic phonon transport and thermal conductance of six low-lying vibration modes in quantum wire modulated with quantum dot at low temperatures. A comparative analysis is made among the six vibrational modes. The results show that the transmission rates of the six vibrational modes relative to reduced frequency display periodic or quasi-periodic oscillatory behavior. Among the four acoustic modes, the thermal conductance contributed by the torsional mode is the smallest, and the thermal conductances of other acoustic modes have adjacent values. It is also found that the thermal conductance of the optical mode increases from zero monotonously. Moreover, the total thermal conductance in concavity-shaped quantum structure is lower than that in convexity-shaped quantum structure. These thermal conductance values can be adjusted by changing the structural parameters of the quantum dot.  相似文献   

7.
We investigate the conductance of a quantum wire with two embedded quantum dots using a T-matrix approach based on the Lippmann-Schwinger formalism. The quantum dots are represented by a quantum well with Gaussian shape and the wire is two-dimensional with parabolic confinement in the transverse direction. In a broad wire the transport can assume a strong nonadiabatic character and the conductance manifests effects caused by intertwined inter- and intra-dot processes that are identified by analysis of the “nearfield” probability distribution of the transported electrons.  相似文献   

8.
By the use of the scattering matrix method, we investigate the effect of evanescent modes on acoustic phonon transport and thermal conductance in both convex and concave type three-dimensional quantum wire. Our results show that the evanescent modes can enhance the transmission coefficient and the thermal conductance in the concave type three-dimensional quantum wire. However, for the convex type three-dimensional quantum wire, the evanescent modes can play adverse effect on the phonon transport. When the length of scattering region is large enough, for all types of three-dimensional quantum wire, the influence of evanescent modes on phonon transport becomes very weak.  相似文献   

9.
We consider wires near a zero temperature transition between superconducting and metallic states. The critical theory obeys hyperscaling, which leads to a universal frequency, temperature, and length dependence of the conductance; quantum and thermal phase slips are contained within this critical theory. Normal, superconducting, and mixed (SN) leads on the wire determine distinct universality classes. For the SN case, wires near the critical point have a universal dc conductance which is independent of the length of the wire at low temperatures.  相似文献   

10.
Combined quantum wire and quantum dot system is theoretically predicted to show unique conductance properties associated with Coulomb interactions. We use a split gate technique to fabricate a quantum wire containing a quantum dot with two tunable potential barriers in a two-dimensional electron gas. We observe the effects of the quantum dot cavity on the electron transport through the quantum wire, such as Coulomb oscillations near the pinch-off voltage and periodic conductance oscillations on the first conductance plateau.  相似文献   

11.
彭小芳  王新军  龚志强  陈丽群 《物理学报》2011,60(12):126802-126802
利用散射矩阵方法,比较了被一维凸形量子点、凹形量子点调制的量子线中膨胀模的声子输运和热导性质. 研究结果表明: 声子的输运概率与热导受制于量子点几何结构,具有凸形量子点结构的量子线中声子输运概率与热导KCV大于具有凹形量子点结构的量子线中声子输运概率与热导KCC. 两者热导之比KCV/KCC依赖于一维量子点的具体结构,且随着温度及主量子线与量子点横截面的边长差ΔSL的增加而增加. 两种具有不同散射结构的一维量子线中热输运性质的区别在于凸形量子点结构中膨胀模数量总是大于凹形量子点结构中膨胀模数量的缘故. 关键词: 声学声子输运 热导 量子结构  相似文献   

12.
We study the thermopower, thermal conductance, electric conductance and the thermoelectric figure of merit for a gate-defined T-shaped single quantum dot (QD). The QD is solved in the limit of strong Coulombian repulsion U, inside the dot, and the quantum wire is modeled on a tight-binding linear chain. We employ the X-boson approach for the Anderson impurity model to describe the localized level within the quantum dot. Our results are in qualitative agreement with recent experimental reports and other theoretical researches for the case of a quantum dot embedded into a conduction channel, employing analogies between the two systems. The results for the thermopower sign as a function of the gate voltage (associated with the quantum dot energy) are in agreement with a recent experimental result obtained for a suspended quantum dot. The thermoelectric figure of merit times temperature results indicates that, at low temperatures and in the crossover between the intermediate valence and Kondo regimes, the system might have practical applicability in the development of thermoelectric devices.  相似文献   

13.
The contact conductance between graphene and two quantum wires which serve as the leads to connect graphene and electron reservoirs is theoretically studied. Our investigation indicates that the contact conductance depends sensitively on the graphene-lead coupling configuration. When each quantum wire couples solely to one carbon atom, the contact conductance vanishes at the Dirac point if the two carbon atoms coupling to the two leads belong to the same sublattice of graphene. We find that such a feature arises from the chirality of the Dirac electron in graphene. Such a chirality associated with conductance zero disappears when a quantum wire couples to multiple carbon atoms. The general result irrelevant to the coupling configuration is that the contact conductance decays rapidly with the increase of the distance between the two leads. In addition, in the weak graphene-lead coupling limit, when the distance between the two leads is much larger than the size of the graphene-lead contact areas and the incident electron energy is close to the Dirac point, the contact conductance is proportional to the square of the product of the two graphene-lead contact areas, and inversely proportional to the square of the distance between the two leads.  相似文献   

14.
We measure the Coulomb drag between parallel split-gate quantum wires with a quantum dot embedded in one of the two wires (drive wire). We observe negative Coulomb drag when a Coulomb oscillation peak appears in the drive wire and the conductance of the other wire (drag wire) is slightly below the first plateau. This indicates that correlation holes are dragged in the drag wire by single electron tunneling through the quantum dot in the drive wire. The drag is only promoted in the drag wire near the barrier regions of the dot, and low compressibility of the drag wire is necessary for the negative drag to occur.  相似文献   

15.
Using the scattering matrix method, we investigate the thermal conductance associated with ballistic phonons at low temperatures in asymmetric quantum structures. The results show that when the structure is an ideal quantum wire, the universal value π 2 κ B2(3h) can be observed at very low temperatures. However, for asymmetric quantum structure, the thermal conductance is less than the universal value π 2 κ B2(3h), even at T → 0. The results also show that the thermal conductance is strongly dependent on the transport direction. The rectification effect can be observed in the asymmetric structure and can be adjusted by changing the structural parameters. A brief analysis of these results is given.   相似文献   

16.
We performed measurements at helium temperatures of the electronic transport in the linear regime in an InAs quantum wire in the presence of a charged tip of an atomic force microscope (AFM) at low electron concentration. We show that at certain concentration of electrons, only two closely placed quantum dots, both in the Coulomb blockade regime, govern conductance of the whole wire. Under this condition, two types of peculiarities—wobbling and splitting—arise in the behavior of the lines of the conductance peaks of Coulomb blockade. These peculiarities are measured in quantum-wire-based structures for the first time. We explain both peculiarities as an interplay of the conductance of two quantum dots present in the wire. Detailed modeling of wobbling behavior made in the framework of the orthodox theory of Coulomb blockade demonstrates good agreement with the obtained experimental data.  相似文献   

17.
We investigate theoretically the spin-dependent electron transport in a Rashba quantum wire with rough edges. The charge and spin conductances are calculated as function of the electron energy and wire length by adopting the spin-resolved lattice Green function method. For a single disordered Rashba wire, it is found that the charge conductance quantization is destroyed by the edge disorder. However, a nonzero spin conductance can be generated and its amplitude can be manipulated by varying the wire length, which is attributed to the broken structure symmetries and the spin-dependent quantum interference induced by the rough boundaries. For a large ensemble of disordered Rashba wires, the average charge conductance decreases monotonically, however, the average spin conductance increases to a maximum value and then decreases, with increasing wire length. Further study shows that the influence of the rough edges on the charge and spin conductances can be eliminated by applying a perpendicular magnetic field to the wire. In addition, a very large magnitude of the spin conductance can be achieved when the electron energy lies between the two thresholds of each pair of subbands. These findings may not only benefit to further apprehend the transport properties of the Rashba low-dimensional systems but also provide some theoretical instructions to the application of spintronics devices.  相似文献   

18.
We study the effect of Coulomb interactions on the conductance of a single-mode quantum wire connecting two bulk leads. When the density of electrons in the wire is very low, they arrange in a finite-length Wigner crystal. In this regime the electron spins form an antiferromagnetic Heisenberg chain with an exponentially small coupling J. An electric current in the wire perturbs the spin chain and gives rise to a temperature-dependent contribution of the spin subsystem to the resistance. At low temperature TJ the spin effect reduces the conductance to e2/h.  相似文献   

19.
肖贤波  李小毛  陈宇光 《物理学报》2009,58(11):7909-7913
理论上研究了含stubs的Rashba自旋轨道耦合(spin-orbit coupling, SOC)量子波导系统的自旋极化输运性质. 利用晶格格林函数方法,发现由于stubs和SOC产生的势阱使系统中出现束缚态,这些束缚态与传播态之间相互干涉导致电导中出现Fano共振结构,同时在对应的自旋极化率中也出现Fano共振或反共振结构. 此外,由于系统结构的突变使电子被反向散射和量子干涉效应,电导中出现一系列的共振峰. 但是,当系统加上外磁场后,所有这些效应都被抑制, 系统重新出现量子化电导, 同时自旋电导也出 关键词: 量子波导 自旋极化输运 自旋轨道耦合  相似文献   

20.
We theoretically investigate the ballistic conductance of hollow quantum wires made of a two-dimensional electron gas occupying a cylindrical surface. The dependence of the conductance on the electron Fermi momentum differs drastically from the conventional case of a strip-like wire. We trace the evolution between these two cases in an exactly solvable model of a circular cylinder affected by a δ-like potential barrier along its element. We consider also a cylinder with two diametrically opposite δ-function barriers, the case representing somewhat realistic semiconductor structures. The general consequences of the boundary condition topology are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号