首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Evidence for the intermediacy of a vinyl radical in the vinylic S(RN)1 reaction (S(RN)1(V)) of 2-anisyl-1,2-diphenylvinyl bromide 2 is obtained. The photostimulated S(RN)1(V) reaction of pinacolone enolate ion with (E)-2 and (Z)-2, which are used as stereoindicators, gives complete loss of the original stereochemistry of the two precursors in the substituted and hydrodehalogenated products; i.e., stereoconvergence is found. It is concluded that in the reaction of 2 a beta-substituted alpha-phenylvinyl radical is a reactive intermediate and that it has either a linear structure or an average linear structure due to a rapidly interconverting E,Z mixture of bent radicals. This conclusion is supported by comparing the stereochemical course of the S(RN)1(V) reaction with those of other reactions of the same precursor, which unambiguously give rise to the same alpha-phenylvinyl radical intermediate by alternative mechanisms. Among the reactions investigated, the hydrodehalogenation of precursor 2 by LAH appears to take place by an ET mechanism.  相似文献   

2.
Sodium alkanethiolates or lithium methyl selenide react with styryl alkyl sulphides and selenides, in DMF at 100°C, to give the products of vinylic or aliphatic substitution. The two nucleophilic reagents are extremely selective. In the case of RSNa the attack at the vinylic carbon atom is much faster than that at the aliphatic carbon atom and the (Z)- or (E)- styryl alkyl sulphides are obtained as the result of a stereospecific vinylic substitution which occurs with retention of configuration. On the contrary, in the case of MeSeLi, under the same experimental conditions, the only reaction occurring is the aliphatic substitution which affords the vinyl thiolate anions, as an equilibrium mixture of the (E)- and (Z)- isomers, or the vinyl selenide anions which retain the configuration of the starting styryl alkyl selenides.  相似文献   

3.
The photochemical reactions in methanol of the vinylic halides 1-4, halostyrenes with a methyl or a trifluoromethyl substituent at the alpha- or beta-position, have been investigated quantitatively. Next to E/Z isomerization, the reactions are formation of vinyl radicals, leading to reductive dehalogenation products, and formation of vinyl cations, leading to elimination, nucleophilic substitution, and rearrangement products. The vinyl cations are parts of tight ion pairs with halide as the counterion. The elimination products are the result of beta-proton loss from the primarily generated alpha-CH(3) and alpha-CF(3) vinyl cations, or from the alpha-CH(3) vinyl cation formed from the beta-CH(3) vinyl cation via a 1,2-phenyl shift. The beta-CF(3) vinyl cation reacts with methanol yielding nucleophilic substitution products, no migration of the phenyl ring producing the alpha-CF(3) vinyl cation occurs. The alpha-CF(3) vinyl cation, which is the most destabilized vinyl cation generated thus far, gives a 1,2-fluorine shift in competition with proton loss. The experimentally derived order of stabilization of the vinyl cations photogenerated in this study, alpha-CF(3) < beta-CF(3) < beta-CH(3) < alpha-CH(3), is corroborated by quantum chemical calculations, provided the effect of solvent is taken into account.  相似文献   

4.
《Tetrahedron》1986,42(17):4889-4896
Vinyl selenoxides and vinyl selenones present a different reactivity towards thiolate or alkoxide anions in DMF. In the case of selenoxides the addition of the nucleophiles regioselectively occurs at the α-carbon leading to the formation of the vinylic substitution products with complete retention of configuration. These reactions occur under very mild conditions indicating that the seleninyl group markedly enhances nucleophilic vinylic substitution rates. The results obtained with vinyl selenones are consistent with competitive nucleophilic attack at the α- and at the β-carbon. The former yields irreversibly the vinylic substitution products, whereas attack at the β-carbon leads to the reversible formation of selenonyl stabilized carbanions. The fate of these intermediates depends upon the nucleophilic reagent employed. With thiolate anions the vinyl selenones are rapidly subtracted from the equilibrium and the carbanion does not give any other product. With methoxide anions, on the contrary, the vinylic substitution is a slow process and the carbanion can give rise to conjugate addition products also. Malonate anions react only at the β-carbon of vinyl selenones and the resulting carbanions suffer proton transfer and intramolecular displacement of the selenonyl group to afford cyclopropane derivatives.  相似文献   

5.
Three series of P-chiral diphosphines based on ferrocene (1a-f, 2a-c) and biferrocenyl skeletons (3a-c), including novel ligands 1f and 3c, were employed in palladium-catalyzed allylic substitution reactions. Steric effects imposed by the phosphine residues were studied using C2-symmetrical donors 1 (1 = 1,1'-bis(arylphenylphosphino)ferrocene with aryl groups a = 1-naphthyl, b = 2-naphthyl, c = 2-anisyl, d = 2-biphenylyl, e = 9-phenanthryl, and f = ferrocenyl), whereas para-methoxy- and/or para-trifluoromethyl substitution of the phenyl moieties in 1a enabled investigation of ligand electronic effects applying ferrocenyl diphosphines 2a-c. Ligands 3 (3 = 2,2'-bis- (arylphenylphosphino)-1,1'-biferrocenyls with aryl substituents a,c = 1-naphthyl (diastereomers) and b = 2-biphenylyl) allowed for comparison of backbone structure effects (bite angle variation) in catalysis. Linear and cyclic allylic acetates served as substrates in typical test reactions; upon attack of soft carbon and nitrogen nucleophiles on (E)-1,3-diphenylprop-2-ene-1-yl acetate the respective malonate, amine, or imide products were obtained in enantioselectivities of up to 99% ee. A crystal structure analysis of a palladium 1,3-diphenyl-eta 3-allyl complex incorporating ligand (S,S)-1a revealed a marked distortion of the allyl fragment, herewith defining the regioselectivity of nucleophile addition.  相似文献   

6.
A high-level computational study using CCSD, CCSD(T), and G2(+) levels of theory has shown that unactivated vinyl substrates such as vinyl chloride would afford gas phase, single-step halide exchange by a pure in-plane sigma-approach of the nucleophile to the backside of the C--Cl sigma bond. Geometry optimization by CCSD/6-31+G* and CCSD(T)/6-31+G* confirms the earlier findings of Glukhovtsev, Pross, and Radom that the S(N)2 reaction of Cl(-) with unactivated vinyl chloride in the gas phase occurs by a sigma attack. Complexation of vinyl chloride with Na(+) does not alter this in-plane sigma preference. However, moderately activated dihaloethylenes such as 1-chloro-1-fluoroethylene undergo gas-phase S(N)2 attack by the accepted pi-route where the nucleophile approaches perpendicular to the plane of the C==C. In the latter case a single-step pi pathway is preferred for the Cl(-) + H(2)C==CFCl reaction. This is the first definitive example at a high level of theory where a single-step pi nucleophilic vinylic substitution is preferred over a multistep mechanism in the gas phase. The activation barriers for these gas-phase single-step sigma- and pi-processes involving both naked anions and Na(+) complexes are, however, prohibitively high. Solvation and the presence of a counterion must play a dominant role in nucleophilic vinylic substitution reactions that proceed so readily in the condensed phase. In solution, nucleophilic vinylic substitution reactions involving electron-withdrawing groups on the carbon--carbon double bond (e.g., -CN, -CHO, and -NO(2)) would almost certainly proceed via a free discrete carbanionic intermediate in accord with experiment.  相似文献   

7.
A highly convenient method has been developed for the synthesis of (Z)-4-alkyl-2-alkyl(aryl)idene-3,4-dihydro-2H-1,4-benzoxazines 9 and (Z)-3-alkyl(aryl)idene-4-tosyl-3,4-dihydro-2H-1,4-benzoxazines 34-38 through palladium-copper-catalyzed reactions. Aryl halides 7 reacted with 2-[N-alkyl(benzyl)-N-prop-2'-ynyl]aminophenyl tosylate 6 in the presence of (PPh3)2PdCl2 (3 mol %), CuI(5 mol %) in triethylamine at room temperature to yield 2-[N-alkyl(benzyl)-N-(3-aryl-prop-2'-ynyl)]-aminophenyl tosylates 8 in extremely good yields (72-96%). The latter could then be cyclized with KOH in ethanol-water to Z-9 in a highly regio- and stereoselective manner. Similarly, palladium-copper-catalyzed reaction of 2-(prop-2'-ynyloxy)aniline (21) with aryl iodides 7 led to 22-26 which after tosylation and cyclization with cuprous iodide in CH3CN in the presence of K2CO3 and Bu4-NBr led to the (Z)-3-alkyl(aryl)idene-4-tosyl 3,4-dihydro-2H-1,4-benzoxazines 34-38 in good overall yields. The Z-stereochemistry of the products was established from 1H NMR spectra, 3JCH values (between vinylic proton and methylenic carbon of the heterocyclic ring), NOE experiments, and X-ray analysis. The method was also found to be suitable for the synthesis of bis(benzoxazinylated) derivatives 17, 39, and 2-alkyl-3,4-dihydro-2H-1,4-benzoxazines 18. Our method for the synthesis of 3,4-dihydro-2H-1,4-benzoxazines is highly efficacious, using easily available starting materials under very mild conditions. Also the synthesis of some novel 5-substituted uracil derivatives 40 and 41 containing the benzoxazinyl moiety and of potential biological interest is being reported.  相似文献   

8.
Generation of vinyl cations is facile by fragmentation of alkenyl(aryl)iodonium trifluoromethanesulfonates. Kinetics and electronic effects were probed by (1)H NMR spectroscopy in CDCl(3). Products of fragmentation include six enol triflate isomers in addition to iodoarenes. The enol triflates arise from direct reaction of a triflate anion with the starting iodonium salts as well as triflate reaction with rearranged secondary cations derived from those salts. G2 calculations of the theoretical isodesmic hydride-transfer reaction between secondary vinyl cation 7 and primary vinyl cation 6 reveal that cation 6 is 17.8 kcal/mol higher in energy. Activation parameters for fragmentation of (Z)-2-ethyl-1-hexenyl(3,5-bis-trifluoromethylphenyl)iodonium triflate, 17e, were calculated using the Arrhenius equation: E(a) = 26.8 kcal/mol, Delta H(++) = 26.2 kcal/mol, and Delta S(++) = 11.9 cal/mol x K. Added triflate increases the rate of fragmentation slightly, and it is likely that for most beta,beta-dialkyl- substituted vinylic iodonium triflates enol triflate fragmentation products are derived from three competing mechanisms: (a) vinylic S(N)()2 substitution; (b) ligand coupling (LC); and (c) concerted aryliodonio departure and 1,2-alkyl shift leading to secondary rather than primary vinyl cations.  相似文献   

9.
[reaction: see text]Phenylacetic acid dianions react via what appears to be an S(RN)1 process with aryl halides under photostimulation to afford aryl substitution products 5 and 6. When the counterion is K+, only 4-biphenylacetic acids 5 are obtained. Both alpha- and para-coupling occurs with Na+ to give a mixture of 5 and 6, while exclusive formation of diphenylacetic acids 6 is observed with the dilithio salt of 1.  相似文献   

10.
There was no reaction of 7-iodobicyclo[4.1.0]heptane (7-iodonorcarane, 1) (exo-endo ratio of ca. 1) with acetophenone enolate ions 2 in DMSO at 25 degrees C; however, with the addition of SmI(2) or FeBr(2) and under the same experimental conditions, the substitution product 3 was obtained in 9% and 72% yields, respectively, with an exo-endo ratio of ca. 16 similar to the product ratio from photostimulated reactions. Thus, it seems that 7-norcaranyl radicals are intermediates of these reactions. With FeBr(2) at 60 degrees C the yield of 3 was as high as 90%. Reactions of 1 with the enolate ion of 2-naphthyl methyl ketone 4 induced by FeBr(2) gave substitution product 5 in 60% yield (96% of it the exo isomer). In competition experiments, 4 was 1.7 times more reactive than 2, and the anion of nitromethane (7) was 6.5 times more reactive than 2 toward 7-norcaranyl radicals. The reactions of 1-iodoadamantane (9) and neopentyl iodide (11) with carbanion 2 induced by FeBr(2) gave the substitution products in 85% and 92% yields, respectively. These observations indicate that all these reactions induced by FeBr(2) occur by the S(RN)1 mechanism.  相似文献   

11.
A catalyst system was identified which promotes the Heck coupling of nonactivated vinyl phosphates with electron deficient alkenes providing a new entry to diene products from simple and readily accessible starting materials. In contrast to our earlier work exploiting P(t-Bu)3 as the ligand in the presence of PdCl2(COD), the application of Buchwald's dialkylbiarylphosphines, X-Phos, effectively promoted the vinylic substitution with a wide range of alkenyl phosphates in the presence of 10 equiv of lithium chloride. Importantly, these reaction conditions suppressed 1,2-migration of the alkenyl palladium(II) intermediate. Further studies are also reported with the catalytic system which encourages isomerization in order to determine the range of vinyl phosphates that may participate in these coupling reactions. The extent of the 1,2-migration was dependent on the C1-substituent where best results were noted for substrates possessing a C1-alkyl quaternary carbon. Hence, with certain members of this class of alkenyl phosphates either the migrated or nonmigrated Heck products may be preferentially synthesized by selection of the phosphine ligand. Finally, competition experiments between an unactivated aryl chloride and a vinyl phosphate with a palladium catalyst possessing either X-Phos or P(t-Bu)3 as ligand demonstrated the ability to carry out Heck coupling reactions selectively with the aryl halide. Oxidative addition of the metal catalyst into the aryl chloride bond rather than the C-O bond of the alkenyl phosphate is therefore preferred.  相似文献   

12.
主要研究2,2,2-三氟卤乙烷(碘、溴、氯、氟)和碳负离子的反应,在一定的温度下,以DMF作溶剂,除了2,2,2-三氟氟乙烷外,反应都得到了相应的2,2,2-三氟卤乙烷的衍生物以及碳负离子的偶联产物.该反应能被紫外光加速,能被对二硝基苯和对二苯酚阻止.因此,该反应是按SRN1即自由基亲核取代反应机理进行.由于此反应能在黑暗中进行,所以它可能是通过热引发或自发引发来完成的.  相似文献   

13.
The reactivity of -SC(NH)NH2 (1), MeCOS- (2), and PhCOS- (3) toward 1-naphthyl radicals was studied in DMSO. The photostimulated reaction of anions 1, 2, and 3 with 1-bromonaphthalene (4) after quenching with MeI renders 1-(methylthio)naphthalene (6) as a main product together with bis(1-naphthyl) sulfide (7) and naphthalene (5). The thioacetate ion (2) and thiobenzoate ion (3) were unreactive toward 4 as electron-donor under photostimulation; however, in the presence of potassium tert-butoxide anion (entrainment conditions), they gave the mentioned products 5, 6, and 7, after the addition of MeI. Quenching of the triplet state of 4 was assigned as the photoinduced initiation step, with a rate constant value of (4.6+/-0.5)x10(8) M-1 s-1 for tert-butoxide anion and a rough estimated value of (8+/-7)x10(7) M-1 s-1 for anion 1. By using hydrogen abstraction from DMSO as the competitive reaction, the absolute rate constants for the addition of anions 1, 2, and 3 to 1-naphthyl radicals have been determined to be 1.0x10(9), 1.2x10(9), and 3.5x10(9) M-1 s-1, respectively. This reactivity order is in agreement with the stability of the resulting radical anions (ArNu)*- (10-12)*-. The inhibition experiments of the photoinduced substitution reaction in the presence of radical scavengers and the global quantum yield higher than the unity are evidence of a radical chain mechanism for these substitution reactions by anions 1 and 2. Anion 3 adds to the 1-naphthyl radical, but is neither able to initiate nor to keep the propagation cycle. Evaluation of the electron-transfer driving forces for the reaction between (ArNu)*- and 4 together with the absence of a chain reaction for the anion 3 indicate that the propagation in the proposed mechanism is given by an acid-base reaction between the radical .C(O)Me or .C(NH)NH2 (13) and a base.  相似文献   

14.
An efficient syntheses of 2-substituted 1,2-dihydro-1-naphthols and 2-substituted 1-naphthols has been developed that involves the sequential palladium-catalyzed ring opening of oxabicyclic alkenes with aryl and vinyl halides followed by oxidation of with IBX. In the first step of the sequence, a combination of Pd(OAc)2, PPh3, Zn, and PMP in dry DMF was employed to catalyze the ring opening of 7-oxabenzonorbornadienes with aryl and vinyl halides to afford the corresponding cis-2-substituted 1,2-dihydronaphthols in good to excellent yields. These reactions occurred under very mild conditions with a variety of aryl halides bearing electron-withdrawing or -donating groups. Similarly, a 7-azabenzonorbornadiene substituted with an electron-withdrawing group on the nitrogen atom underwent facile ring-opening reaction with aryl halides to provide cis-2-substituted (1,2-dihydro-1-naphthyl)carbamates in excellent yields. Oxidation of the intermediate 1,2-dihydro-1-naphthols using IBX yielded the corresponding 2-substituted 1-naphthols in good to excellent yields.  相似文献   

15.
《Tetrahedron》1986,42(17):4897-4906
Vinyl selenones react with sodium methanethiolate in methanol to give the product of conjugate addition and subsequent displacement of the selenonyl group. On the contrary, the same reaction carried out with alkoxide anions affords the conjugate addition products in excellent yields. These β-alkoxy alkyl phenyl selenones are stable compounds which can react in several ways with loss of the selenonyl group. Their reactions with MeONa or MeSNa have been investigated both in MeOH and in DMF. The products observed derive from substitution and elimination processes as well as from retro Michael reactions followed by nucleophilic substitution of the vinyl selenone thus generated. These results indicate that the ArSeO2 is a strong electron attracting group with peculiar properties. Beside making acidic the α-hydrogen atoms it activates the carbon-carbon double bond towards the addition of anionic reagents and it acts as a good leaving group in nucleophilic substitution, both aliphatic and vinylic, and in elimination reactions. The appropriate choice of the reagent and of the solvent allows to direct the reaction towards the desired products. Useful synthetic applications of these reactions are presented.  相似文献   

16.
The reactions of trimethylstannyl ions (Me(3)Sn(-)) with vinyl chlorides in liquid ammonia give good yields of vinylstannanes. Some of them react in the dark, and others need light stimulation to react. The fact that these reactions are inhibited by radical and radical anion traps shows that they occur by the S(RN)1 mechanism. When the reaction takes place with 1,1-dichloro-1-alkenes, monosubstitution reduced products are formed in an E/Z mixture. The efficient synthesis of triarylolefins by Pd(0)-catalyzed cross-coupling reactions of vinylstannanes with several iodoarenes is reported. Similar yields were obtained in one-pot-type reactions.  相似文献   

17.
Nucleophilic addition-elimination of ortho- or para-substituted phenols to aryl trifluorovinyl ethers (TFVEs) in N,N-dimethylformamide was studied. Using sodium hydride as a base afforded vinyl substitution products R-Ar-O-CF=CF-O-Ar-R', where R or R' = H, Br, OMe, tert-Bu, or Ph. The vinyl substitution products produced mixtures of (Z)/(E)-isomers and this isomer ratio was influenced by substitution with more sterically encumbered phenol nucleophiles. Reactions using caesium carbonate afforded addition products R-Ar-O-CHFCF(2)-O-Ar-R' whereas upon dehydrofluorination using sodium hydride produced vinyl substitution products. The preparation of vinyl substituted and addition products proceeded in overall good isolated yields and were elucidated using (1)H and (19)F NMR, GC-MS, and X-ray analysis. Vinyl substituted products were inert to UV light and chemical reactivity using common polymerization promoters. Thermal activation of the (Z)/(E)-fluoroolefin (-CF=CF-) was observed at an onset of 310 °C in nitrogen using differential scanning calorimetry (DSC) producing insoluble network material. The synthesis, characterization, and mechanism for stereoselectivity are discussed.  相似文献   

18.
Alkoxydienyl- and alkoxystyrylboronates were used for Pd-catalyzed cross-coupling reactions with lactam-derived vinyl triflates. The hydrolysis of the coupling products with alkoxystyrylboronates provided the corresponding alpha-acyl-substituted 3,4-dihydro-(2H)-pyridines and 2,3,4,5-tetrahydroazepines in good to high yields. The hydrolysis of the coupling products with alkoxydienylboronates, performed in the presence of Amberlyst 15, resulted in a Nazarov-type cyclization that afforded hexahydro[1]pyrindin-7-ones and 3,4,5,6,7,8-hexahydro-(2H)-cyclopenta[b]azepin-8-ones. This methodology represents a novel and efficient procedure for the preparation of these classes of azacyclic compounds.  相似文献   

19.
A highly novel, general, and convenient palladium and copper-catalyzed procedure has been developed for the synthesis of (E)-2-(2-arylvinyl)-3-tosyl-2,3-dihydro-1,3-benzothiazoles 28-40. 3-(2-Aminophenylthio)prop-1-yne 1 reacts with aryl iodides 2-14 under palladium-copper catalysis to yield the disubstituted alkynes 15-27 which after tosylation undergo a novel cyclization with CuI in the presence of triethylamine in THF to (E)-2-(2-arylvinyl)-3-tosyl-2,3-dihydro-1,3-benzothiazoles 28-40 rather than to the expected 3-alkylidene-4-tosyl-3,4-dihydro-2H-1,4-benzothiazines 41. The reaction is highly regio- and stereoselective. The synthesis of 2-(2-arylethyl)-3-tosylbenzothiazolines 42-47, 2-(2-arylvinyl)benzothiazoles 48-54, and a novel 5-substituted uracil derivative 55 of potential biological importance is also being reported. Similarly, the palladium-copper-catalyzed arylation of S-[2-(N-prop-2'-ynyl)aminophenyl]-N,N-dimethylthiocarbamate 58 with aryl iodides yields the disubstituted alkynes 59 which on cyclization with KOH in methanol leads to (E)-2-(2-aryl)methylidene-3,4-dihydro-2H-1,4-benzothiazines 61. The reaction of the diiodo compounds 12-14a, however, with 58 under palladium-copper-catalyzed reactions involves the participation of only one of the iodo groups in the heteroannulation process giving compounds 61i and 61j. These are amenable to further palladium-catalyzed reactions and afford polyunsaturated heteroaromatic compounds 62 and 63.  相似文献   

20.
[reaction: see text]. Exposure of (E)-beta-alkylvinyl(phenyl)-lambda3-iodanes to thioamides in dichloromethane at room temperature was found to result in a bimolecular nucleophilic substitution (S(N)2) at the vinylic carbon atom to give inverted (Z)-enethiols and/or (Z)-S-vinylthioimidonium salts. Vinylic S(N)2 reactions with thioureas are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号