首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The crystal structure of the title compound has been determined by X-ray crystallographic analysis from diffractometer data. The compound is found to exist in the crystalline state as the mono-cis isomer (a). The conjugated chain is in a folded configuration and the two sulfur atoms are on opposing sides. It is the first time such a mono-cis isomer has been analysed by X-ray crystallography.  相似文献   

2.
The synthesis of sterically hindered 1,1′, 3,3′-tetraethylbenzimidazolotriazatrimethine cyanine dyes, their electron absorption spectra and that of their photo-products (inverse photochromism) is described. Kinetic data of the thermally reversed reaction of the photo-bleached compounds are given. The differences of the electron absorption spectra in this series in this series of dyes are explained by the different degree of distortion of the π-systems which is confirmed by an X-ray investigation.  相似文献   

3.
In 10 steps, 3′,4′-diethynyl-2′,3′,5′-trideoxy-5′-noruridine ( 14 ) was synthesized in 5% overall yield from commercial uridine, using conventional methods of nucleoside chemistry. As two functional groups capable to react with each other are present in the same molecule, the synthetic compound is able to form polymers, similar to the polynucleotides, by an acetylene coupling reaction.  相似文献   

4.
The preparation of 1′-and 3′-amino-5′,6′,7′,8′-tetrahydro-2′-acetonaphthones (IIIa and IIIb) is described, by reduction of the low temperature nitration products of 5′,6′,7′,8′-tetrahydro-2′-acetonaphtone (I). The structures of the nitro isomers (IIa and IIb), and the reduction products, IIIa and IIIb, were elucidated spectroscopically. By known reactions, a series of new heterocyclic compounds prepared from the o-aminoketones, IIIa and IIIb, resulted in two series of new heterocyclic compounds.  相似文献   

5.
To measure the hydrophobic character of the ribose moiety of doridosine on the adenosine receptors, 2′,3′-didehydro-2′,3′-dideoxydoridosine (2) and 2′,3′-dideoxydoridosine (3) were prepared. Initial treatment of doridosine with N,N-dimethylformamide diethylacetal, and subsequently with tert-butyldimethylsilyl chloride gave 5. Compound 5 was then reacted with 1,1′-thiocarbonyldiimidazole and the resulting thionocarbonate 6 was heated with triethyl phosphite at 135°C to afford 7. Treatment of compound 7 with tetrabutylammonium fluoride and methanolic ammonia furnished compound 2 in good yield. Compound 2 was subjected to catalytic hydrogenation affording compound 3 in 85% yield.  相似文献   

6.
7.
Reaction of tetramethylsuccinicdinitrile with methylmagnesium iodide in boiling toluene leads to the title compound 8 in 80–85% yield. The magnesium complex of 2-imino-3,3,4,4-tetramethyl-5-methylidene-pyrrolidine is shown to act as an intermediate.  相似文献   

8.
2′‐Substituted 5′,6′,7′,8′‐tetrahydro‐4′H‐spiro[cyclohexane‐1,9′‐[1,2,4]triazolo[5,1‐b]quinazolines] 3a‐d were synthesized by condensation of 3‐substituted 5‐amino‐1,2,4‐triazoles 1a‐d with 2‐cyclohexylidene cyclohexanone 2 in DMF. The compounds 3 were hydrogenated with sodium borohydride in ethanol to give 2′‐substituted cis‐4a',5′,6′,7′,8′,8a'‐hexahydro‐4′H‐spiro[cyclohexane‐1,9′‐[1,2,4]triazolo[5,1‐b]quinazolines] 4a‐d in high yields. The reactions of alkylation, acylation and sulfonylation of the compounds 4 were studied. The structure of the synthesized compounds was determined on the basis of NMR measurements including HSQC, HMBC, NOESY techniques and confirmed by the X‐ray analysis of 6 and 11b . The described synthetic protocols provide rapid access to novel and diversely substituted hydrogenated [1,2,4]triazolo[5,1‐b]quinazolines.  相似文献   

9.
The conformational features of the title compound, C28H44S6, are compared with previously reported analogous macrocycles. The type of substituent affects considerably the conformation of the macrocycle. A 1H NMR titration of the title compound with AgBF4 indicated the formation of the 1:1 complex, which was not crystallized.  相似文献   

10.
The synthesis of the polyhalogenated phenylalanines Phe(3′,4′,5′-Br3) ( 3 ), Phe(3′,5′-Br2-4′-Cl) ( 4 ) and DL -Phe (2′,3′,4′,5′,6′-Br5) ( 9 ) is described. The trihalogenated phenylalanines 3 and 4 are obtained stereospecifically from Phe(4′-NH2) by electrophilic bromination followed by Sandmeyer reaction. The most hydrophobic amino acid 9 is synthesized from pentabromobenzyl bromide and a glycine analogue by phase-transfer catalysis. With the amino acids 4, 9 , Phe(4′-I) and D -Phe, analogues of [1-sarcosin]angiotensin II ([Sar1]AT) are produced for structure-activity studies and tritium incorporation. The diastereomeric pentabromo peptides L - and D - 13 are separated by HPLC. and identified by catalytic dehalogenation and comparison to [Sar1]AT ( 10 ) and [Sar1, D -Phe8]AT ( 14 ).  相似文献   

11.
A series of 6,8-disubstituted-9-β-D-ribofuranosylpurine 3′,5′-cyclic phosphates were prepared employing preformed 9-β-D-ribofuranosylpurine 3′,5′-cyclic phosphate precursors. Three synthetic approaches were utilized to accomplish the syntheses. The first approach involved a study of the order of nucleophilic substitution, 6 vs 8, of the intermediate 6,8-dichloro-9-β-D-ribofuranosyipurine 3′,5′-cyclic phosphates ( 2 ) with various nucleophilic agents to yield 8-amino-6-chloro-, 8-chloro-6-(diethylamino)-, 6-chloro-8-(diethylamino)-, 6,8-bis-(diethylamino)- and 8-(benzylthio)-6-chloro-9-β-D-ribofuranosylpurine 3′,5′-cyclic phosphate (4, 9, 10, 11, 13) respectively and 6-chloro-9-β-D-ribofuranosylpurin-8-one 3′,5′-cyclic phosphate ( 5 ) and 8-amino-9-β-D-ribofuranosylpurine-6-thione 3′,5′-cyclic phosphate ( 6 ). The order of substitution was compared to similar substitutions on 6,8-dichloropurines and 6,8-dichloropurine nucleosides. The second scheme utilized nucleophilic substitution of 6-chloro-8-substituted-9-β-D-ribofuranosylpurine 3′,5′-cyclic, phosphates obtained from the corresponding 8-subslituted inosine 3′,5′-cyclic phosphates by phosphoryl chloride, 6,8-bis-(benzylthio)-, 6-(diethylamino)-8-(benzylthio),8-(p-chlorophenylthio(-6-(diethylamino)- and 6,8-bis-(methyl-thio)-9-β-D-ribofuranosylpurine 3′,5′-cyclic phosphates ( 14, 12, 20 , and 21 ) respectively, were prepared in this manner. The final scheme involved N1-alkylation of an 8-substituted adenosine 3′,5′-cyclic phosphate followed by a Dimroth rearrangement to give 6-(benzylamino)-8-(methylthio)- and 6-(benzylamino)-8-bromo-9-β-D-ribofuranosylpurine 3′,5′-cyclic phosphate ( 24 and 25 ).  相似文献   

12.
Formylation of 2,2′,5′,2′-terfuran ( 1 ) with N-methylformanilide and phosphorus oxychloride gave 5-formyl-2,2′,5′,2′-terfuran ( 2 ) and 5,5′-diformyl-2,2′5′,2′-terfuran ( 3 ). Reduction of 2 and 3 afforded 5-hydroxymethyl-2,2′,5′,2′-terfuran ( 4 ) and 5,5′ dihydroxymethyl-2,2′,5′,2′-terfuran ( 5 ), respectively. Terfuran 1 reacted with phenylmagnesium bromide to give 5-(phenylhydroxymethyl)-2,2′,5′,2′-terfuran ( 6 ), and was carbonated to 5-carboxy 2,2′,5′,2′-terfuran ( 7 ) and 5,5′-dicarboxy-2,2′,5′,2′-terfuran ( 8 ). Bromination of 1 with N-bromosuccinimide gave 5,5′-dibromo 2,2′,5′,2′-terfuran ( 9 ).  相似文献   

13.
14.
The title compound, C23H28O2, was obtained from the reaction of acetone with meta‐cresol. The molecular structure consists of two identical subunits which are nearly perpendicular to each other. The oxygen‐containing rings are not planar and the molecule is chiral. The crystal structure consists of chains of molecules of the same chirality arranged along the [010] axis.  相似文献   

15.
The 1′,2′-unsaturated 2′,3′-secoadenosine and 2′,3′-secouridine analogues were synthesized by the regioselective elimination of the corresponding 2′,3′-ditosylates, 2 and 18 , respectively, under basic conditions. The observed regioselectivity may be explained by the higher acidity and, hence, preferential elimination of the anomeric H–C(1′) in comparison to H? C(4′). The retained (tol-4-yl)sulfonyloxy group at C(3′) of 3 allowed the preparation of the 3′-azido, 3′-chloro, and 3′-hydroxy derivatives 5–7 by nucleophilic substitution. ZnBr2 in dry CH2Cl2 was found to be successful in the removal (85%) of the trityl group without any cleavage of the acid-sensitive, ketene-derived N,O-ketal function. In the uridine series, base-promoted regioselective elimination (→ 19 ), nucleophilic displacement of the tosyl group by azide (→ 20 ), and debenzylation of the protected N(3)-imide function gave 1′,2′-unsaturated 5′-O-trityl-3′-azido-secouridine derivative 21 . The same compound was also obtained by the elimination performed on 2,2′-anhydro-3′-azido-3′-azido-3′-deoxy-5′-O-2′,3′-secouridine ( 22 ) that reacted with KO(t-Bu) under opening of the oxazole ring and double-bond formation at C(1′).  相似文献   

16.
4, 4′,5, 5′‐Tetranitro‐2, 2′‐bisimidazole (TNBI) was synthesized by nitration of bisimidazole (BI) and recrystallized from acetone to form a crystalline acetone adduct. Its ammonium salt ( 1 ) was obtained by the reaction with gaseous ammonia. In order to explore new explosives or propellants several energetic nitrogen‐rich 2:1 salts such as the hydroxylammonium ( 3 ), guanidinium ( 4 ), aminoguanidinium ( 5 ), diaminoguanidinium ( 6 ) and triaminoguanidinium 7 4, 4′,5, 5′‐tetranitro‐2, 2′‐bisimidazolate were prepared by facile metathesis reactions. In addition, methylated 1, 1′‐dimethyl‐4, 4′,5, 5′‐tetranitro‐2, 2′‐bisimidazole (Me2TNBI, 8 ) was synthesized by the reaction of 2 and dimethyl sulfate. Metal salts of TNBI can also be easily synthesized by using the corresponding metal bases. This was proven by the synthesis of pyrotechnically relevant dipotassium 4, 4′,5, 5′‐tetranitro‐2, 2′‐bisimidazolate ( 2 ), which is a brilliant burning component e.g. in near‐infrared flares. All compounds were characterized by single crystal X‐ray diffraction, NMR and vibrational spectroscopy, elemental analysis and DSC. The sensitivities were determined by BAM methods (drophammer and friction tester). The heats of formation were calculated using CBS‐4M electronic enthalpies and the atomization method. With these values and mostly the X‐ray densities different detonation parameters were computed by the EXPLO5 computer code. Due to the great thermal stability and calculated energetic properties, especially guanidinium salt 4 could be served as a HNS replacement.  相似文献   

17.
18.
19.
Three title compounds 4a—4c have been synthesized by the cyclodehydration of 1’-benzylidine-4’-(3β-substituted-5α-cholestane-6-yl)thiosemicarbazones 2a—2c with thioglycolic acid followed by the treatment with cold conc. H2SO4 in dioxane. The compounds 2a—2c were prepared by condensation of 3β-substituted-5α-cholestan- 6-one-thiosemicarbazones 1a—1c with benzaldehyde. These thiosemicarbazones 1a—1c were obtained by the reaction of corresponding 3β-substituted-5α-cholestan-6-ones with thiosemicarbazide in the presence of few drops of conc. HCl in methanol. The structures of the products have been established on the basis of their elemental, analytical and spectral data.  相似文献   

20.
At 160 K, one of the Cl atoms in the furanoid moiety of 3‐O‐acetyl‐1,6‐di­chloro‐1,4,6‐tri­deoxy‐β‐d ‐fructo­furan­osyl 2,3,6‐tri‐O‐acetyl‐4‐chloro‐4‐deoxy‐α‐d ‐galacto­pyran­oside, C20H27­Cl3O11, is disordered over two orientations, which differ by a rotation of about 107° about the parent C—C bond. The conformation of the core of the mol­ecule is very similar to that of 3‐O‐acetyl‐1,4,6‐tri­chloro‐1,4,6‐tri­deoxy‐β‐d ‐tagato­furanos­yl 2,3,6‐tri‐O‐acetyl‐4‐chloro‐4‐deoxy‐α‐d ‐galacto­pyran­oside, particularly with regard to the conformation about the glycosidic linkage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号