首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Complexes of pyrrole‐2‐carbaldehyde thiosemicarbazones, [(C4H4N4)(H)C2=N3–N2(H)–C1(=S)–N1HR; R = Ph, H2L1; Me, H2L2; H, H2L3] with nickel(II) and palladium(II) are described. The reaction of nickel(II) acetate with H2L1 in methanol in 1:1 molar ratio yielded a complex of composition, [Ni(κ2‐N3,S‐HL1)2] ( 1 ). Likewise reaction of NiCl2 with H2L2 in 1:1 molar ratio in acetonitrile in the presence of triethylamine base followed by the addition of pyridine did not yield the anticipated [Ni(κ3‐N4,N3,S‐L2)(py)] complex, moreover a bis‐square‐planar complex, [Ni(κ2‐N3,S‐HL2)2] ( 2 ) was formed. However, in the presence of bipyridine (bipy), it yielded the addition product, [Ni(κ2‐N3,S‐HL2)22‐N, N‐bipy)] ( 3 ). Reaction of PdCl22‐P, P–PPh2–CH2–PPh2) with H2L3 in toluene in the presence of triethylamine has yielded a complex of stoichiometry, [Pd(κ3‐N4,N3,S–L3)(κ1‐P–PPh2–CH2–P(O)Ph2] ( 4 ). The ligands (HL1) and (HL2) are chelating to NiII metal atom as anions binding through N3,S‐donor atoms with pendant pyrrole groups, and (L3)2– is chelating to the PdII metal atom as dianion through N4,N3,S‐donor atoms (pyrrole is N4‐bonded). Fourth site in 4 is bonded to one P‐donor atom of PPh2–CH2–P(O)Ph2, whose pendant –PPh2 group involves auto oxidation to –P(O)PPh2 during reaction. These complexes were characterized using analytical data, IR, NMR (1H, 31P) spectroscopy and X‐ray crystallography. Complexes 1 , 2 , and 4 have square‐planar arrangement, whereas complex 3 is octahedral.  相似文献   

2.
(Acetonitrile‐1κN)[μ‐1H‐benzimidazole‐2(3H)‐thione‐1:2κ2S:S][1H‐benzimidazole‐2(3H)‐thione‐2κS]bis(μ‐1,1‐dioxo‐1λ6,2‐benzothiazole‐3‐thiolato)‐1:2κ2S3:N;1:2κ2S3:S3‐dicopper(I)(CuCu), [Cu2(C7H4NO2S2)2(C7H6N2S)2(CH3CN)] or [Cu2(tsac)2(Sbim)2(CH3CN)] [tsac is thiosaccharinate and Sbim is 1H‐benzimidazole‐2(3H)‐thione], (I), is a new copper(I) compound that consists of a triply bridged dinuclear Cu—Cu unit. In the complex molecule, two tsac anions and one neutral Sbim ligand bind the metals. One anion bridges via the endocyclic N and exocyclic S atoms (μ‐S:N). The other anion and one of the mercaptobenzimidazole molecules bridge the metals through their exocyclic S atoms (μ‐S:S). The second Sbim ligand coordinates in a monodentate fashion (κS) to one Cu atom, while an acetonitrile molecule coordinates to the other Cu atom. The CuI—CuI distance [2.6286 (6) Å] can be considered a strong `cuprophilic' interaction. In the case of [μ‐1H‐benzimidazole‐2(3H)‐thione‐1:2κ2S:S]bis[1H‐benzimidazole‐2(3H)‐thione]‐1κS;2κS‐bis(μ‐1,1‐dioxo‐1λ6,2‐benzothiazole‐3‐thiolato)‐1:2κ2S3:N;1:2κ2S3:S3‐dicopper(I)(CuCu), [Cu2(C7H4NO2S2)2(C7H6N2S)3] or [Cu2(tsac)2(Sbim)3], (II), the acetonitrile molecule is substituted by an additional Sbim ligand, which binds one Cu atom via the exocylic S atom. In this case, the CuI—CuI distance is 2.6068 (11) Å.  相似文献   

3.
Gold(I) cyanide forms complexes with imidazolidine‐2‐thione (etu) and di­methyl­thio­urea (dmtu) with the formula [Au2(CN)2L2], i.e. the title complexes di­cyano‐1κC,2κC‐bis(imidazolidine‐2‐thione)‐1κS,2κS‐digold(I)(AuAu), [Au2(CN)2(C3H6N2S)2], and di­cyano‐1κ2C‐bis(N,N′‐di­methyl­thio­urea)‐2κ2S‐digold(I)(AuAu), [Au2(CN)2(C3H8N2S)2]. In the etu complex, two approximately linear (etu)AuCN groups are held together by a weak homopolar Au—Au bond [3.117 (1) Å], with a torsion angle of 61 (3)° between the two groups. In the dmtu complex, an approximately linear Au(dmtu)2 group is bound to an approximately linear Au(CN)2 group by a weak heteropolar Au—Au bond [3.091 (1) Å], with a torsion angle of 83 (5)° between the two groups.  相似文献   

4.
The dichloromethane solvates of the isomers tetrakis(μ‐1,3‐benzothiazole‐2‐thiolato)‐κ4N:S4S:N‐dipalladium(II)(PdPd), (I), and tetrakis(μ‐1,3‐benzothiazole‐2‐thiolato)‐κ6N:S2S:N‐dipalladium(II)(PdPd), (II), both [Pd2(C7H4NS2)4]·CH2Cl2, have been synthesized in the presence of (o‐isopropylphenyl)diphenylphosphane and (o‐methylphenyl)diphenylphosphane. Both isomers form a lantern‐type structure, where isomer (I) displays a regular and symmetric coordination and isomer (II) an asymmetric and distorted structure. In (I), sitting on an centre of inversion, two 1,3‐benzothiazole‐2‐thiolate units are bonded by a Pd—N bond to one Pd atom and by a Pd—S bond to the other Pd atom, and the other two benzothiazolethiolate units are bonded to the same Pd atoms by, respectively, a Pd—S and a Pd—N bond. In (II), three benzothiazolethiolate units are bonded by a Pd—N bond to one Pd atom and by a Pd—S bond to the other Pd atom, and the fourth benzothiazolethiolate unit is bonded to the same Pd atoms by, respectively, a Pd—S bond and a Pd—N bond.  相似文献   

5.
The complexes [2‐(1H‐imidazol‐4‐yl‐κN3)ethylamine‐κN]bis(tri‐tert‐butoxysilanethiolato‐κS)cobalt(II), [Co(C12H27O3SSi)2(C5H9N3)], and [2‐(1H‐imidazol‐4‐yl‐κN3)ethylamine‐κN]bis(tri‐tert‐butoxysilanethiolato‐κS)zinc(II), [Zn(C12H27O3SSi)2(C5H9N3)], are isomorphous. The central ZnII/CoII ions are surrounded by two S atoms from the tri‐tert‐butoxysilanethiolate ligand and by two N atoms from the chelating histamine ligand in a distorted tetrahedral geometry, with two intramolecular N—H...O hydrogen‐bonding interactions between the histamine NH2 groups and tert‐butoxy O atoms. Molecules of the complexes are joined into dimers via two intermolecular bifurcated N—H...(S,O) hydrogen bonds. The ZnII atom in [(1H‐imidazol‐4‐yl‐κN3)methanol]bis(tri‐tert‐butoxysilanethiolato‐κ2O,S)zinc(II), [Zn(C12H27O3SSi)2(C4H6N2O)], is five‐coordinated by two O and two S atoms from the O,S‐chelating silanethiolate ligand and by one N atom from (1H‐imidazol‐4‐yl)methanol; the hydroxy group forms an intramolecular hydrogen bond with sulfur. Molecules of this complex pack as zigzag chains linked by N—H...O hydrogen bonds. These structures provide reference details for cysteine‐ and histidine‐ligated metal centers in proteins.  相似文献   

6.
The title compound, catena‐poly­[[μ‐cyano‐1:2κ2C:N‐di­cyano‐1κ2Ctrans‐bis­[N‐(2‐hydroxy­ethyl)­ethane‐1,2‐di­amine‐2κ2N,N′]­cadmium(II)­nickel(II)]‐μ‐cyano‐1:2′κ2C:N], [CdNi(CN)4(C4H12N2O)2], consists of alternating square‐planar Ni(CN)4 fragments, formally dianionic, and Cd(hydet‐en)2 moieties [hydet‐en is N‐(2‐hydroxy­ethyl)­ethyl­ene­di­amine], with the two bridging cyanide ligands in a mutually trans disposition at the Ni atom and cis at the Cd atom. The resulting one‐dimensional zigzag chain structure has the Ni atom on an inversion center, while the distorted octahedron centered on the Cd atom lies on a twofold axis. The polymer chains are connected into undulating sheets by weak interchain N—H⋯N, N—H⋯O and O—H⋯N hydrogen bonds, which are also present between successive sheets.  相似文献   

7.
In the title compound, (2-chloro­benzyl)­tris­(pyridine-2-thiol­ato)-κ2N,S2N,SS-tin(IV), [Sn(C7H6Cl)(C5H4NS)3], two of the three pyridine-2-thiol­ato ligands (SPy) are bidentate and one is monodentate. The bonding C atom of the 2-chloro­benzyl group, the S atom of the monodentate SPy and the S and N atoms of the two bidentate SPy ligands form a distorted octahedron around the Sn atom. The three S atoms and the N atom of one of the bidentate SPy ligands occupy the equatorial positions, while the N atom of the second bidentate SPy ligand and the C(CH2) atom are axial. The axial N—Sn—C angle of 157.9 (1)° demonstrates the heavy distortion of the octahedron.  相似文献   

8.
In the title compound, [Ni(C12H11N2)2], the NiII cation lies on an inversion centre and has a square‐planar coordination geometry. This transition metal complex is composed of two deprotonated N,N′‐bidentate 2‐[(phenylimino)ethyl]‐1H‐pyrrol‐1‐ide ligands around a central NiII cation, with the pyrrolide rings and imine groups lying trans to each other. The Ni—N bond lengths range from 1.894 (3) to 1.939 (2) Å and the bite angle is 83.13 (11)°. The Ni—N(pyrrolide) bond is substantially shorter than the Ni—N(imino) bond. The planes of the phenyl rings make a dihedral angle of 78.79 (9)° with respect to the central NiN4 plane. The molecules are linked into simple chains by an intermolecular C—H...π interaction involving a phenyl β‐C atom as donor. Intramolecular C—H...π interactions are also present.  相似文献   

9.
The complex cation in [4,5-di­hydro-4,4,5,5-tetra­methyl-2-(2-pyridyl-κN)­imidazol-1-oxyl 3-oxide-κO3](nitrato-κ2O,O′)(N,N,N′,N′-tetra­methyl-1,2-ethanedi­am­ine-κ2N,N′)­nickel(II) hexafluorophosphate dichloromethane solvate, [Ni(NO3)(C6H16N2)(C12H16N3O2)]PF6·CH2Cl2, is the first example of a nitro­nyl nitro­xide complex of a transition metal ion having d electrons in which nitrate is coordinated as a bidentate ligand. Owing to the smaller steric requirement of NO3, the Ni—­O(nitro­xide) bond length [2.014 (2) Å] is remarkably shorter than that in the corresponding ­β-­diketonate complexes [2.052 (4)–2.056 (2) Å].  相似文献   

10.
The title compound, [Ni(C20H17N3OP)(N3)], is the first complex with a semicarbazide‐based ligand having a P atom as one of the donors. The influence of the P atom on the deformation of the coordination geometry of the NiII ion is evident but less expressed than in the cases of complexes with analogous seleno‐ and thiosemicarbazide ligands. The torsion angles involving the two bonds formed by the P atom within the six‐membered chelate ring have the largest values [C—P—Ni—N = 24.3 (2)° and C—C—P—Ni = −24.2 (4)°], suggesting that the P atom considerably influences the conformation of the ring. Two types of N—H...N hydrogen bond connect the complex units into chains.  相似文献   

11.
The synthesis and characterization of two dinuclear complexes, namely fac‐hexacarbonyl‐1κ3C,2κ3C‐(pyridine‐1κN)[μ‐2,2′‐sulfanediyldi(ethanethiolato)‐1κ2S1,S3:2κ3S1,S2,S3]dirhenium(I), [Re2(C4H8S3)(C5H5N)(CO)6], ( 1 ), and tetraethylammonium fac‐tris(μ‐2‐methoxybenzenethiolato‐κ2S:S)bis[tricarbonylrhenium(I)], (C8H20N)[Re2(C7H7OS)3(CO)6], ( 2 ), together with two mononuclear complexes, namely (2,2′‐bithiophene‐5‐carboxylic acid‐κ2S,S′)bromidotricarbonylrhenium(I), ( 3 ), and bromidotricarbonyl(methyl benzo[b]thiophene‐2‐carboxylate‐κ2O,S)rhenium(I), ( 4 ), are reported. Crystals of ( 1 ) and ( 2 ) were characterized by X‐ray diffraction. The crystal structure of ( 1 ) revealed two Re—S—Re bridges. The thioether S atom only bonds to one of the ReI metal centres, while the geometry of the second ReI metal centre is completed by a pyridine ligand. The structure of ( 2 ) is characterized by three S‐atom bridges and an Re…Re nonbonding distance of 3.4879 (5) Å, which is shorter than the distance found for ( 1 ) [3.7996 (6)/3.7963 (6) Å], but still clearly a nonbonding distance. Complex ( 1 ) is stabilized by six intermolecular hydrogen‐bond interactions and an O…O interaction, while ( 2 ) is stabilized by two intermolecular hydrogen‐bond interactions and two O…π interactions.  相似文献   

12.
The title compound, catena‐poly­[[μ‐cyano‐1:2κ2C:N‐dicyano‐1κ2C‐bis(N,N‐di­methyl­ethyl­enedi­amine‐2κ2N,N′)­pallad­ium(II)­copper(II)]‐μ‐cyano‐1:2′κ2C:N], [CuPd(CN)4(C4H12N2)2]n, consists of infinite quasi‐linear chains with all metal positions on centers of symmetry. The paramagnetic [Cu(dmen)2]2+ cations are linked by diamagnetic [Pd(CN)4]2− anions via bridging cyano groups, which occupy trans positions in both cation and anion, giving rise to 2,2‐TT‐type chains. The coordination polyhedron of the paramagnetic Cu atom is an octahedron exhibiting typical elongation due to the Jahn–Teller effect, with two longer Cu—N([triple‐bond]C) bonds in the axial positions [2.5528 (13) Å] and four shorter Cu—Ndmen bonds (dmen is N,N‐dimethylethylenediamine) in the equatorial plane [1.9926 (11) and 2.1149 (12) Å]. The Cu—N[triple‐bond]C angle is 138.03 (12)°. Neighboring chains form weak N—H⋯NC hydrogen bonds.  相似文献   

13.
The aurophilicity exhibited by AuI complexes depends strongly on the nature of the supporting ligands present and the length of the Au–element (Au—E) bond may be used as a measure of the donor–acceptor properties of the coordinated ligands. A binuclear iron–gold complex, [1,3‐bis(2,6‐diisopropylphenyl)imidazol‐2‐ylidene‐2κC2]dicarbonyl‐1κ2C‐(1η5‐cyclopentadienyl)gold(I)iron(II)(AuFe) benzene trisolvate, [AuFe(C5H5)(C27H36N2)(CO)2]·3C6H6, was prepared by reaction of K[CpFe(CO)2] (Cp is cyclopentadienyl) with (NHC)AuCl [NHC = 1,3‐bis(2,6‐diisopropylphenyl)imidazol‐2‐ylidene]. In addition to the binuclear complex, the asymmetric unit contains three benzene solvent molecules. This is the first example of a two‐coordinated Au atom bonded to an Fe and a C atom of an N‐heterocyclic carbene.  相似文献   

14.
In the neutral title complex, trans‐bis(2,2′‐imino­di­ethanol‐N,O)­bis­(iso­thio­cyanato)­nickel(II), [Ni(NCS)2(C4H11NO2)2], the iso­thio­cyanate ions and the di­ethanol­amine mol­ecules act as mono­dentate and bi­dentate ligands, respectively. The NiII ion exhibits a distorted octahedral configuration with crystallographically imposed inversion symmetry and NNCS—Ni—Namine and NNCS—Ni—Oamine bond angles of 88.78 (10) and 89.44 (10)°, respectively. The Ni—N bond distances are in the range 2.069 (3)–2.096 (2) Å. The mol­ecules are linked by hydrogen bonds to form a three‐dimensional infinite lattice.  相似文献   

15.
The title complex, C17H9N5·C6H4S4, contains π‐deficient bis(di­nitrile) and TTF mol­ecules stacked alternately in columns along the a‐axis direction; the interplanar angle between the TTF molecule and the isoindolinyl C4N[C(CN)2]2 moiety is 1.21 (4)°. The N‐allyl moiety in the TCPI mol­ecule is oriented at an angle of 87.10 (10)° with respect to the five‐membered C4N ring, and the four C[triple‐bond]N bond lengths range from 1.134 (3) to 1.142 (3) Å, with C—C[triple‐bond]N angles in the range 174.3 (3)–176.9 (2)°. In the TTF system, the S—C bond lengths are 1.726 (3)–1.740 (3) and 1.751 (2)–1.763 (2) Å for the external S—C(H) and internal S—C(S) bonds, respectively.  相似文献   

16.
Silver nitrate reacts with 6-methylmercaptopurine riboside (6-MMPR) in aqueous solution containing methanol and dimethyl sulfoxide at room temperature to give a colourless crystalline complex, namely, bis(6-methylmercaptopurine riboside-κN7)(nitrato-κ2O,O′)silver(I) 2.32-hydrate, [Ag(NO3)(C11H14N4O4S)2]·2.32H2O. The crystal structure, determined from synchrotron diffraction data, shows a central AgI ion on a crystallographic twofold rotation axis, coordinated in an almost linear fashion by two 6-MMPR ligands via atom N7 (purine numbering), with the nitrate counter-ion loosely coordinated as a bidentate ligand, forming a discrete molecular complex as an approximate dihydrate. The complex and water molecules are connected in a three-dimensional network by hydrogen bonding.  相似文献   

17.
The crystal structures of two salts, products of the reactions between [(5‐methyl‐2‐pyridyl)aminomethylene]bis(phosphonic acid) and 4‐aminopyridine or ammonia, namely bis(4‐aminopyridinium) hydrogen [(5‐methyl‐2‐pyridinio)aminomethylene]diphosphonate 2.4‐hydrate, 2C5H7N2+·C7H10N2O6P22−·2.4H2O, (I), and triammonium hydrogen [(5‐methyl‐2‐pyridyl)aminomethylene]diphosphonate monohydrate, 3NH4+·C7H9N2O6P23−·H2O, (II), have been determined. In (I), the Z configuration of the ring N—C and amino N—H bonds of the bisphosphonate dianion with respect to the Cring—Namino bond is consistent with that of the parent zwitterion. Removing the H atom from the pyridyl N atom results in the opposite E configuration of the bisphosphonate trianion in (II). Compound (I) exhibits a three‐dimensional hydrogen‐bonded network, in which 4‐aminopyridinium cations and water molecules are joined to ribbons composed of anionic dimers linked by O—H...O and N—H...O hydrogen bonds. The supramolecular motif resulting from a combination of these three interactions is a common phenomenon in crystals of all of the Z‐isomeric zwitterions of 4‐ and 5‐substituted (2‐pyridylaminomethylene)bis(phosphonic acid)s studied to date. In (II), ammonium cations and water molecules are linked to chains of trianions, resulting in the formation of double layers.  相似文献   

18.
The one‐dimensional structure of catena‐poly­[[bis(2,2′‐bi­pyri­dyl‐1κ2N,N′)‐μ‐cyano‐1:2κ2N:C‐di­cyano‐2κ2C‐di­nickel(II)]‐μ‐cyano‐C:N], [Ni2(CN)4(C10H8N2)2]n, consists of infinite zigzag chains running parallel to the c axis. The chains are composed of paramagnetic [Ni(bipy)2]2+ cations (bricks; nickel on a twofold axis) linked by diamagnetic [Ni(CN)4]2? anions (mortar; nickel on an inversion center) via bridging cyano groups. The bridging cyano groups occupy cis positions in the cation and trans positions in the anion, giving rise to a new previously unknown CT‐type chain (i.e. cistrans‐type) among square tetra­cyano complexes. The coordination polyhedron of the paramagnetic Ni atom (twofold symmetry) is a slightly deformed octahedron with the two Ni—N(bipy) bonds in cis positions being somewhat longer [2.112 (3) Å] than the remaining four Ni—N bonds with a mean value of 2.065 (6) Å. The bond distances and angles in the anion have typical values.  相似文献   

19.
In the structure of the title compound, hepta­aqua‐1κ3O,2κ2O,3κ2O‐(μ3‐2,6‐bis{[bis­(carboxyl­ato­methyl)­amino]methyl}‐4‐chloro­phenolato‐1κO;2κ4O,O′,N,O1;3κ4O1N′,O′′,O′′′)dinickel(II)­sodium(I) pentahydrate, [NaNi2(C16H14ClN2O9)(H2O)7]·5H2O or [Ni2(Cl‐HXTA)(H2O)4{Na(H2O)3}]·5H2O, the trinuclear complex unit consists of two distorted NiNO5 octahedra bridged by a phenolate O atom and an NaO4 tetrahedron bridged to one of the Ni octahedra by a carboxylate O atom. There are four intramolecular hydrogen bonds forming four six‐membered rings in the complex and the complex mol­ecules are connected to each other by a very complicated hydrogen‐bond network.  相似文献   

20.
Three new metal(II)–cytosine (Cy)/5‐fluorocytosine (5FC) complexes, namely bis(4‐amino‐1,2‐dihydropyrimidin‐2‐one‐κN3)diiodidocadmium(II) or bis(cytosine)diiodidocadmium(II), [CdI2(C4H5N3O)2], ( I ), bis(4‐amino‐1,2‐dihydropyrimidin‐2‐one‐κN3)bis(nitrato‐κ2O,O′)cadmium(II) or bis(cytosine)bis(nitrato)cadmium(II), [Cd(NO3)2(C4H5N3O)2], ( II ), and (6‐amino‐5‐fluoro‐1,2‐dihydropyrimidin‐2‐one‐κN3)aquadibromidozinc(II)–6‐amino‐5‐fluoro‐1,2‐dihydropyrimidin‐2‐one (1/1) or (6‐amino‐5‐fluorocytosine)aquadibromidozinc(II)–4‐amino‐5‐fluorocytosine (1/1), [ZnBr2(C4H5FN3O)(H2O)]·C4H5FN3O, ( III ), have been synthesized and characterized by single‐crystal X‐ray diffraction. In complex ( I ), the CdII ion is coordinated to two iodide ions and the endocyclic N atoms of the two cytosine molecules, leading to a distorted tetrahedral geometry. The structure is isotypic with [CdBr2(C4H5N3O)2] [Muthiah et al. (2001). Acta Cryst. E 57 , m558–m560]. In compound ( II ), each of the two cytosine molecules coordinates to the CdII ion in a bidentate chelating mode via the endocyclic N atom and the O atom. Each of the two nitrate ions also coordinates in a bidentate chelating mode, forming a bicapped distorted octahedral geometry around cadmium. The typical interligand N—H…O hydrogen bond involving two cytosine molecules is also present. In compound ( III ), one zinc‐coordinated 5FC ligand is cocrystallized with another uncoordinated 5FC molecule. The ZnII atom coordinates to the N(1) atom (systematic numbering) of 5FC, displacing the proton to the N(3) position. This N(3)—H tautomer of 5FC mimics N(3)‐protonated cytosine in forming a base pair (via three hydrogen bonds) with 5FC in the lattice, generating two fused R22(8) motifs. The distorted tetrahedral geometry around zinc is completed by two bromide ions and a water molecule. The coordinated and nonccordinated 5FCs are stacked over one another along the a‐axis direction, forming the rungs of a ladder motif, whereas Zn—Br bonds and N—H…Br hydrogen bonds form the rails of the ladder. The coordinated water molecules bridge the two types of 5FC molecules via O—H…O hydrogen bonds. The cytosine molecules are coordinated directly to the metal ion in each of the complexes and are hydrogen bonded to the bromide, iodide or nitrate ions. In compound ( III ), the uncoordinated 5FC molecule pairs with the coordinated 5FC ligand through three hydrogen bonds. The crystal structures are further stabilized by N—H…O, N—H…N, O—H…O, N—H…I and N—H…Br hydrogen bonds, and stacking interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号