首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Raman spectroscopy was applied to analyse structural changes in serum albumins (bovine serum albumin, BSA; human serum albumin, HSA) following proton and γ‐irradiation (0.5, 5 and 50 Gy). Characteristic Raman bands of both polypeptide backbone and amino acid residues were sensitive to irradiation. Significant damage of HSA/BSA was observed only at the highest dose (50 Gy). Raman spectra confirmed radiation‐induced denaturation, destruction of helical structures and aggregation of serum albumins. The differences in the dose‐dependent effects of proton and γ‐radiation on studied proteins are discussed. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
We found that the fluorescence intensity of the lanthanum (La3+)-curcumin (CU) complex can be highly enhanced by proteins in the presence of sodium dodecyl benzene sulphonate (SDBS). Based on this finding, a new fluorimetric method for the determination of protein was developed. Under optimized conditions, the enhanced intensities of fluorescence are quantitatively in proportion to the concentrations of proteins in the range 0.0080?C20.0 ??g·mL?1 for bovine serum albumin (BSA) and 0.00080?C20.0 ??g·mL?1 for human serum albumin (HSA) with excitation of 425 nm, and 0.00020?C20.0 ??g·mL?1 for bovine serum albumin (BSA) and 0.00080?C20.0 ??g·mL?1for human serum albumin (HSA) with excitation of 280 nm, while corresponding qualitative detection limits (S/N????3) are as low as 5.368, 0.573, 0.049, 0.562 µg·mL?1, respectively. Study on reaction mechanism reveals that proteins can bind with La3+, CU and SDBS through self-assembling function with electrostatic attraction, hydrogen bonding, hydrophobic interaction and van der Waals forces, etc. The proteins form a supermolecular association with multilayer structure, in which La3+-CU is clamped between BSA and SDBS. The unique high fluorescence enhancement of CU is resulted through synergic effects of favorable hydrophobic microenvironment provided by BSA and SDBS, and efficient intermolecular energy transfer among BSA, SDBS and CU. In energy transfer process, La3+ plays a crucial role because it not only shortens the distance between SDBS and CU, but also acts as a ??bridge?? for transferring the energy from BSA to CU.  相似文献   

3.
It is found that in hexamethylene tetramine (HMTA)-HCl buffer of pH=8.00, proteins can enhance the fluorescence of terbium (III) (Tb3+)-2-thenoyltrifluoroacetone (TTA)-sodium dodecyl benzene sulfonate (SDBS) system. Based on this, a sensitive method for the determination of proteins is proposed. The experiments indicate that under the optimum conditions, the enhanced fluorescence intensity is in proportion to the concentration of proteins in the range of 4.0×10−9-7.5×10−6 g/mL for bovine serum albumin (BSA), 5.0×10−9-1.5×10−5 g/mL for human serum albumin (HSA), 1.0×10−8-7.5×10−6 g/mL for egg albumin (EA). Their detection limits (S/N=3) are 0.5, 0.8 and 2.0 ng/mL, respectively. The interaction mechanism is also studied.  相似文献   

4.
We found that the fluorescence intensity of curcumin (CU) can be highly enhanced by protein bovine serum albumin (BSA) and human serum albumin (HSA) in the presence of chitosan (CTS). Based on this finding, a new fluorimetric method to determine the concentration of protein was developed. Under optimized conditions, the enhanced intensities of fluorescence are quantitatively in proportion to the concentrations of protein in range of 0.007-100 μg·mL(-1) for BSA and 0.004-100 μg·mL(-1) for HSA at 426 nm excitation, and 0.007-100 μg·mL(-1) for BSA and 0.01-100 μg·mL(-1)for HSA at 280 nm excitation, while corresponding qualitative detection limits (S/N = 3) can lower to 3.96, 2.46, 4.56, 9.20 ng·mL(-1), respectively. The method has been successfully used for the determination of HSA in real samples. Based on resonance light scattering and UV-visible absorption spectroscopic analysis, mechanism studies suggested that the highly enhanced fluorescence of CU was resulted from synergic effects of favorable hydrophobic microenvironment provided by BSA and CTS and efficient intermolecular energy transfer between BSA and CU. Protein BSA may bind to CTS through hydrogen bonds, which causes the protein conformation to convert from β-fold to α-helix. CU can combine with the BSA-CTS complex through its center carbonyl carbon, and CTS plays a key role in promoting the energy transfer process by shortening the distance between BSA and CU.  相似文献   

5.
The interactions of scopoletin to bovine serum albumin (BSA) and human serum albumin (HSA) have been investigated by spectroscopic methods. The fluorescence tests indicated that the formation mechanism of scopoletin–BSA/HSA complexes belonged to the static quenching. The displacement experiments suggested that scopoletin primarily bound to tryptophan residues of BSA/HSA within site I (subdomain IIA). The binding distance of scopoletin to BSA/HSA was 2.38/2.34 nm. The thermodynamic parameters (ΔG, ΔH and ΔS) calculated on the basis of different temperatures revealed that the binding of BSA–scopoletin was mainly depended on van der Waals interaction and hydrogen bond, and yet the binding of HSA–scopoletin was strongly relied on the hydrophobic interaction and electrostatic interaction. The results of synchronous fluorescence, 3D fluorescence, UV–vis absorption, and FT-IR spectra showed that the conformations of BSA and HSA altered with the addition of scopoletin. In addition, the effects of some common ions on the binding constants of scopoletin to proteins were also investigated.  相似文献   

6.
It is found that rutin can react with yttrium(III) (Y3+), and emits fluorescence of rutin. The intensity is greatly enhanced by proteins in the presence of sodium lauryl sulfate (SLS). Based on this, a new fluorimetric method of determination of proteins is developed. Under optimum conditions, the enhanced intensity of fluorescence is in proportion to the concentration of proteins in the range of 5.0×10−9-1.0×10−5 g/mL for bovine serum albumin (BSA), 3.0×10−8-1.0×10−5 g/mL for human serum albumin (HSA) and 1.0×10−7-2.0×10−5 g/mL for egg albumin (EA). Their detection limits (S/N=3) are 1.6×10−9, 9.8×10−9 and 2.1×10−8 g/mL, respectively. The interaction mechanism is also studied.  相似文献   

7.
The interactions of two stereoisomeric antioxidant flavonoids, catechin (C) and epicatechin (EC) with bovine serum albumin (BSA) and human serum albumin (HSA), have been investigated by steady state and time resolved fluorescence, phosphorescence, circular dichroism (CD), FTIR and protein–ligand docking studies. The steady-state fluorescence studies indicate a single binding site for both the ligands. FTIR spectra suggest that in both the albumins, C and EC stabilize the α-helix at the cost of a corresponding loss in the β-sheet structure. CD studies have been carried out using (±)C, and both the epimers (+)C and (?)C. The low temperature phosphorescence and protein–ligand [(+), (?) and (±) forms of C and EC] docking studies indicate that the ligands bind in the proximity of Trp 134 of BSA and Trp 214 of HSA, thereby changing their solvent accessible surface areas (ASA). Asn 158 and Glu 130 side chains are found to be within the hydrogen bonding distance from the phenolic –OH groups of C and EC in the case of BSA complex. C and EC are located within the binding pocket of sub-domain IIa of HSA.  相似文献   

8.
Polyphenols find wide use as antioxidants, cancer chemopreventive agents and metal chelators. The latter activity has proved interesting in many aspects. We have probed the binding characteristics of the polyphenol quercetin–Cu(II) complex with human serum albumin (HSA) and bovine serum albumin (BSA). Fluorescence studies reveal that the quercetin–Cu(II) complex can quench the fluorescence of the serum albumins. The binding constant (Kb) values are of the order of 105 M?1 which increased with rise in temperature in case of HSA and BSA interacting with the quercetin–Cu(II) complex. Displacement studies reveal that both the ligands bind to site 1 (subdomain IIA) of the serum albumins. However, thermodynamic parameters calculated from temperature dependent studies indicated that the mode of interaction of the complexes with the proteins differs. Both ΔH° and ΔS° were positive for the interaction of the quercetin–Cu(II) complex with both proteins but the value of ΔH° was negative in case of the interaction of quercetin with the proteins. This implies that after chelation with metal ions, the polyphenol alters its mode of interaction which could have varying implications on its other physicochemical activities.  相似文献   

9.
An optimization experiment for an indirect-competitive (IC) fluoroimmunoassay (FIA) against C-reactive protein (CRP) was conducted exploiting an immobilized-antigen glass slide and an anti-CRP antibody tagged with fluorescent silica nanoparticles (FSNPs). The optimized conditions for the IC FIA were as follows: time and concentration of treatment with glutaraldehyde, 30 min and 1.5 %, respectively; time of reaction with coating antigen and concentration of coating antigen for immobilization, 1 h and 0.1 mg/mL, respectively; concentration of FSNP-anti-CRP antibody conjugate coupled by the biotin-avidin interaction, the bioconjugate, for immune reaction, 0.250 mg/mL; concentration of bovine serum albumin (BSA) for blocking and time of blocking with BSA, 3 % and 30 min, respectively. By using the glass slide, a highly sensitive detection against CRP was possible with the limit of detection below 0.1 ng/mL.  相似文献   

10.
A novel 4-(2-dimethylaminoethyloxy)-N-octadecyl-1,8-naphthalimide (DON) has been synthesized as a spectrofluorimetric probe for the determination of proteins. Photophysics of DON in different solvents has been delineated in this paper. Progressive redshift with polarity of solvents in emission and absorption spectra hints at intramolecular charge transfer. The interactions of DON with serum albumins (i.e., human serum albumin (HSA) and bovine serum albumin (BSA)) were studied by fluorescence and absorption spectroscopy. Fluorescence data revealed that the quenching of HSA/BSA by DON were static quenching and the DON–HSA/BSA complexes were formed. The binding constant (Kb) for HSA and was found to be 8.44×10?4 and 60.26×10?4 M?1 and the number of binding sites (n) were 1.00 and 1.40, respectively. The thermodynamic parameters, ΔH and ΔS, for the DON–HSA system was calculated to be ?14.83 kJ mol?1 and 23.61 J mol?1 K?1, indicating the hydrogen bonds and hydrophobic interactions were the dominant intermolecular force. ΔH and ΔS for the binding of DON with BSA was ?60.08 kJ mol?1 and ?90.7441 mol?1 K?1, suggesting the hydrogen bonds and van der Waals force played the main role in the interaction. The results of displacement experiments showed that DON bound HSA/BSA occurred at the Trp-214 proximity, located in subdomain IIA of the serum albumin structure (the warfarin binding pocket). The effect of DON on the conformation of HSA was also analyzed by synchronous and three-dimensional fluorescence spectra. The fluorescence of DON could be quenched by HSA, based on which, a fluorometric method for the determination of microamount protein using DON in the medium of HCl?Tris buffer solution (pH=7.4) was developed. The linear range of the calibration curves was 0.1–10.0 μM for HSA, 0.1–11.2 μM for BSA and 0.2–9.7 μM for egg albumin (EA). The detection limit (3σ) for HSA was 1.12×10?10 M, for BSA it was 0.92×10?10 M and for EA it was 4.33×10?10 M. The effect of metal cations on the fluorescence spectra of DON in ethanol was also investigated. The method has been applied to detect the total proteins in human serum samples and the results were in good agreement with those reported by the hospital.  相似文献   

11.
在模拟人体生理条件下,基于3-(2-氰基乙基)胞嘧啶(CECT)与人血清白蛋白(HSA)和牛血清白蛋白(BSA)之间的相互作用,以CECT为分子光谱探针研究了CECT-蛋白质体系的同步荧光光谱特征。同步荧光光谱特征及强度与Δλ值、反应介质、反应温度等因素有关。在此基础上,建立了以CECT为分子光谱探针定量测定血清样品中蛋白质含量的新方法。在最佳实验条件下,CECT-HSA和CECT-BSA体系的同步荧光强度分别在0~441.4和0~351.0 μg·mL-1的浓度范围内与蛋白质浓度呈现良好的线性关系, 检测限分别为0.023和0.035 μg·mL-1,相对标准偏差(RSD)1.2%~3.3%, 加标回收率为97.2%~100.4%。该方法具有简单、快速、灵敏度较高、线性范围宽、精密度和回收率较好等优点。该法可直接用于血清样品中蛋白质总量的测定,结果令人满意。  相似文献   

12.
《光谱学快报》2013,46(4):407-417
Based on the enhancement effects of Rayleigh light scattering (RLS) on Arsenazo-DBC, a novel quantitative method for the determination of proteins in aqueous solutions has been proposed. The reaction of Dibromochloroarsenazo (Arsenazo-DBC) and five proteins (BSA, HSA, egg albumin, human γ-IgG, Lysozyme) has been studied. Under optimal conditions the dynamic ranges for proteins were 2.5–60.0 μg·ml?1, and the detection limits for HSA and BSA were at 98.50 ng·ml?1 and 88.10 ng·ml?1, respectively. Comparing with other methods, the method is simple, practical and relatively free from interference from coexisting substances. The method was employed for the determination of total protein in human serum with satisfactory results.  相似文献   

13.
The interaction of intense, ultrashort (femtosecond) pulses of infrared light with water leads to the generation of a white light supercontinuum due to nonlinear optical effects. This supercontinuum extends over the wavelength range 400–900 nm. The blue-sided components of this supercontinuum are due to laser-induced plasma effects and are found to sensitively depend on the presence in water of minute quantities of protein dopants (dilutions of 0.025%–0.1%). Salivary proteins like mucin and immunoglobulin-A lead to pronounced suppression of the blue-sided components, while proteins found in blood serum, such as transferrin, immunoglobulin G (IgG) and human serum albumin (HSA), do not show any such suppression. It is postulated that major salivary proteins have a propensity to efficiently scavenge plasma electrons and thereby extinguish the plasma that is formed upon laser irradiation.  相似文献   

14.
The binding behavior of antibacterial drug sulfadiazine (SDZ) with water soluble globular proteins like bovine as well as human serum albumin (BSA and HSA, respectively) and lysozyme (LYS) was monitored by fluorescence titration and molecular docking calculations. The experimental data reveal that the quenching of the intrinsic protein fluorescence in presence of SDZ is due to the strong interaction in the drug binding site of the respective proteins. The Stern-Volmer plot shows positive deviation at higher quencher concentration for all the proteins and was explained in terms of a sphere of action model. The calculated fluorophore-quencher distances vary within 4?~?11 Å in different cases. Fluorescence experiments at different temperature indicate thermodynamically favorable binding of SDZ with the proteins with apparently strong association constant (~104–105 M?1) and negative free energy of interaction within the range of ?26.0?~??36.8 kJ mol?1. The experimental findings are in good agreement with the respective parameters obtained from best energy ranked molecular docking calculation results of SDZ with all the three proteins.  相似文献   

15.
采用荧光光谱法和紫外-可见吸收光谱法研究了不同温度下富勒醇与血清白蛋白的相互作用机理,研究结果表明,富勒醇对人和牛血清白蛋白的内源荧光有明显的猝灭作用, 猝灭过程均为静态猝灭,并测定和计算得到不同温度下富勒醇与血清白蛋白反应的结合常数(KHSA273 K1.546×104,KHSA293 K1.513×104;KBSA273 K13.920×104,KBSA293 K939.500×104)、结合位点数(nHSA293 K0.952 2;nBSA293 K1.376 2)。通过结合反应的热力学数据分析,推测出富勒醇与血清白蛋白之间主要靠疏水作用结合;富勒醇与BSA结合强度明显大于富勒醇与HSA的结合强度,BSA的结合常数受温度影响更大;人和牛血清白蛋白在273和293 K的结合位点数在0.901→1.376之间,BSA与富勒醇结合位点数略大于HAS。同时采用分子模拟对接方法,预测富勒醇对牛血清白蛋白的结合部位和作用方式;通过AlignX序列分析法得到BSA与HSA的氨基酸序列相似度较高,在序列160和185附近氨基酸序列差异性较大,推测这是影响两种蛋白质之间与富勒醇作用方式的关键位点。  相似文献   

16.
芦丁对血清白蛋白构象的影响   总被引:1,自引:0,他引:1  
用同步荧光光谱法和圆二色谱法研究了芦丁对牛血清白蛋白(BSA)和人血清白蛋白(HSA)构象和功能的影响,同时用电化学方法研究了芦丁与血清白蛋白之间的结合作用。在体内随着芦丁浓度的增加,其与血清白蛋白结合时对血清白蛋白的构象无影响,但对血清白蛋白的二级结构有影响,导致α-螺旋结构减少,β-折叠结构增加,蛋白质的二级结构被破坏。电化学研究发现:芦丁的氧化还原电流随着血清白蛋白浓度的增加而明显降低, 表明芦丁与血清白蛋白发生反应,生成比较稳定的复合物。芦丁的氧化还原最大峰电位也随着血清白蛋白浓度的增加发生变化,峰电位差略增加,表明芦丁的氧化还原性随着血清白蛋白浓度的增加而增强。进一步证明芦丁在体内能够被血清白蛋白存储和转运。  相似文献   

17.
The rotational diffusion of complexes of human serum albumin (HSA) and bovine serum albumin (BSA) with neutral surfactant Triton X-100 is study by analyzing the polarized tryptophan fluorescence and its parameters are determined (rotational relaxation time, diffusion coefficient, effective radius). Similarities in the solubilization of both proteins are revealed: an effective solubilization BSA and HSA in solutions containing neutral surfactant Triton X-100 is achieved at concentration of the latter of 0.3 mM, slightly greater than its critical micelle concentration (0.25 mM), with the most significant effect taking place at pH 5.0, a value close to the isoelectric points of the proteins.  相似文献   

18.
ABSTRACT

The interaction between phenformin hydrochloride and bovine serum albumin (BSA) was investigated by the methods of chemiluminescence combined with equilibrium dialysis technique. A novel N-bromosuccinimide (NBS)–eosin Y (EY) chemiluminescence (CL) method was established for the determination of phenformin. The mechanism of this chemiluminescence system was proposed. Optimization studies were performed to determine the phenformin. Under the optimal conditions, the CL intensity was linear for a phenformin concentration over the range of 4.6 × 10?8 to 5.0 × 10?5 g/mL. The detection limit was 1.5 × 10?8 g/mL. The data obtained by the present equilibrium dialysis–CL system were analyzed using the Klotz plot and the Scatchard analysis. The results showed that the Klotz plot and the Scatchard plot are linear with good correlation coefficient, indicating that the phenformin has only one type of binding site on BSA. The binding parameters were the number of the binding sites n (1.02) and the estimated association constant K (2.66 × 104 L/mol). The chemiluminescence system combined with equilibrium dialysis developed in this work demonstrated its use for determination of interaction between drug and protein by using relatively simple instrument.  相似文献   

19.
酸性棕SR分光光度法测定血清白蛋白   总被引:4,自引:0,他引:4  
在Britton-Robinson酸性缓冲溶液中,加入非离子表面活性剂阿拉伯胶,能使酸性棕SR(ASR)与血清白蛋白形成复合物,最大吸收波长为610 nm,比ASR红移165 nm。采用分光光度法研究了该结合反应的最佳条件,并据此建立了一种测定血清蛋白的新方法。λ=610 nm时,εBSA=6.23×104 L·mol-1·cm-1,εHSA=7.23×104 L·mol-1·cm-1;牛血清白蛋白(BSA)在0~91.0 mg·L-1,人血清白蛋白(HSA)在0~95.2 mg·L-1范围内服从比尔定律。检出限分别为BSA:5.72 mg·L-1,HSA:5.15 mg·L-1。对6个人血清蛋白总量平行6次测定,相对标准偏差1.8%~4.4%,回收率93.6%~109.1%,并对5只小白鼠的血清蛋白总量进行了测定。  相似文献   

20.
利用药物对蛋白的荧光猝灭作用,用荧光法研究了N-苯酰甲噻唑溴(PTB)与牛血清白蛋白(BSA)及人血清白蛋白(HSA)的相互作用。测定发现BSA溶液的最大激发波长为280 nm,HSA溶液的最大激发波长为290 nm。分别向溶液中加入PTB后,原有的最大发射波长处的强度明显减弱。说明PTB对BSA和HAS有荧光猝灭作用。PTB与BSA,HSA有中等强度的结合。测得15 ℃时PTB与BSA,HSA的结合常数分别为3.66×103和3.83×103,结合位点数n分别为1.02和1.16;37 ℃时PTB与BSA,HSA的结合常数分别为3.58×103和3.35×103,结合位点数分别为0.95和0.87。根据热力学常数确定了PTB与BSA,HSA之间的主要作用力类型均为静电作用力。通过Fster偶级-偶级非辐射能量转移原理,得到BSA,HSA与PTB结合的位置距色氨酸残基的距离分别为7.5和7.9 nm。根据白蛋白的结构,可以推测BSA,HSA与PTB结合的位点在ⅡA亚结构域,靠近Try214的区域。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号