首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
The stabilization of an edge-flame in the near-wake of a fuel injector is discussed within the context of a diffusive-thermal model, but with a realistically computed flow. Although the boundary layer approximation can be used to describe the mixing process in the wake region, the velocity field in the immediate vicinity of the injector satisfies the full Navier-Stokes equations. The stabilization of the edge-flame and its dynamics are affected not only by diffusive-thermal effects, but also by the acceleration experienced by the fuel and oxidizer entrained into the mixing layer. The present calculations confirm an earlier prediction that edge-flame oscillations can be triggered by heat losses alone. Moreover, it is shown that when the intensity of the losses is excessive, oscillations can occur even when the Lewis numbers are less than one. New results are also obtained when examining the flame response to variations in Lewis numbers. For Lewis numbers that are not too large, there exists a minimum value of the Damkhler number D below which the edge-flame cannot be stabilized. The response curve, describing the standoff distance as a function of D is multi-valued and the turning point, which also coincides with the marginal stability state, identifies extinction or blowoff conditions. For D above this value, the edge-flame is steady and stable. For relatively large values of the Lewis number the response curve is monotonic. There is, however, a restricted range of states where the flame undergoes spontaneous oscillations with the edge-flame moving back and forth along the stoichiometric surface dragging behind it the trailing diffusion flame.  相似文献   

2.
The dynamics of an edge flame confined in a non-premixed microcombustor model is studied numerically within the context of a diffusive-thermal model. Fuel and oxidizer, separated upstream by a thin plate, flow through a channel with a prescribed velocity. At the tip of the plate, the fuel and oxidizer mix and, when ignited, an edge flame is sustained at some distance from the plate. The objective in this work is to consider the effects of confinement, differential diffusion, and heat loss on the dynamics of an edge flame in a narrow channel. We consider a wide range of channel widths and allow for changing Lewis numbers, and both adiabatic conditions and heat losses along the channel walls. The results illustrate how the flame shape and standoff distance are affected by the channel width, by mixture composition through variations in Lewis numbers and by heat losses. Conditions for flame stabilization, flame oscillations and flame extinction or blowoff are predicted.  相似文献   

3.
This paper studies the heat-release oscillation response of premixed flames to oscillations in reactant stream fuel/air ratio. Prior analyses have studied this problem in the linear regime and have shown that heat release dynamics are controlled by the superposition of three processes: flame speed, heat of reaction, and flame surface area oscillations. Each contribution has somewhat different dynamics, leading to complex frequency and mean fuel/air ratio dependencies. The present work extends these analyses to include stretch and non quasi-steady effects on the linear flame dynamics, as well as analysis of nonlinearities in flame response characteristics. Because the flame response is controlled by a superposition of multiple processes, each with a highly nonlinear dependence upon fuel/air ratio, the results are quite rich and the key nonlinearity mechanism varies with mean fuel/air ratio, frequency, and amplitude of excitation. In the quasi-steady framework, two key mechanisms leading to heat-release saturation have been identified. The first of these is the flame-kinematic mechanism, previously studied in the context of premixed flame response to flow oscillations and recently highlighted by Birbaud et al. (Combustion and Flame 154 (2008), 356–367). This mechanism arises due to fluctuations in flame position associated with the oscillations in flame speed. The second mechanism is due to the intrinsically nonlinear dependence of flame speed and mixture heat of reaction upon fuel/air ratio oscillations. This second mechanism is particularly dominant at perturbation amplitudes that cause the instantaneous stoichiometry to oscillate between lean and rich values, thereby causing non-monotonic variation of local flame speed and heat of reaction with equivalence ratio.  相似文献   

4.

Nitrogen-diluted hydrogen burning in air is modeled numerically using a constant density and one-step reaction model in a plane two-dimensional counterflow configuration. An optically thin assumption is used to investigate the effects of radiation on the dynamics, structure, and extinction of diffusion flames. While there exist dual steady-state extinction limits for the 1D radiative flame response, it is found that as the 1D radiative extinction point is approached the 1D low-stretch diffusion flame exhibits oscillatory response, even with sub-unity Lewis number fuel. These radiation-induced limit cycle oscillations are found to have increasing amplitude and decreasing frequency as the stretch rate is reduced. Flame oscillation eventually leads to permanent extinction at the stretch rate which is larger than the steady-state radiative extinction value. Along the 1D radiative response curve, the transition from 1D flame to 2D structure and the differences in the resulting 2D flame patterns are also examined using a variety of initial profiles, with special emphasis on the comparison of using the initial profiles with and without a flame edge. Similar to the previous studies on the high-stretch adiabatic edge flames using the same configuration, the high-stretch radiative flames are found to resist 1D blow-off quenching through various 2D structures, including propagating front and steady cellular flames for initial profiles with and without flame edges. For all initial profiles studied, the low-stretch radiative flames are also found to exhibit different 2D flame phenomena near the 1D radiative extinction limit, such as transient cellular structures, steady cellular structures, and pulsating ignition fronts. Although the results demonstrate the presence of low-stretch and high-stretch 2D bifurcation branches close to the corresponding 1D extinction limits irrespective of the initial profile used, particular 2D flame structures in certain stretch rate range are initial profile dependent. The existence of two-dimensional flame structures beyond the 1D steady-state radiative extinction limit suggests that the flammable range is expanded as compared to that predicted by the 1D model. Hence, multi-dimensional flame patterns need to be accounted for when determining the flammability limits for a given system.  相似文献   

5.
We examine in this study the structure and dynamic properties of an edge flame formed in the near-wake of two initially separated shear flows, one containing fuel and the other oxidiser. A comprehensive study is carried out within the diffusive-thermal framework where the flow field, computed a-priori, is used for the determination of the combustion field. Our focus is on the effects of three controlling parameters: the Damköhler number controlling the overall flow rate, the oxidiser-to-fuel strain rate ratio of the supply streams that determines the extent of oxidiser entrainment towards the mixing zone, and the Lewis number, assumed equal for the fuel and oxidiser, that depends on the mixture composition. Response curves, representing the edge flame standoff distance as a function of Damköhler number, exhibit two distinct shapes: C-shaped and U-shaped curves characterising the response of low and high Lewis number flames, respectively. Stability considerations show that the upper solution branch of the C-shaped response curve is unstable and hence corresponds to physically unrealistic states, but due to heat conduction toward the cold plate the lower solution branch is always stable. The states forming this solution branch correspond to flame attachment, where the edge flame remains practically attached to the tip of the plate until it is blown off by the flow when the velocity exceeds a critical value. The U-shaped response, on the other hand, consists of equilibrium states that are globally stable. Thus, high Lewis number flames can be always stabilised near the splitter plate, with the edge held stationary or undergoing a back and forth motion, or lifted and stabilised downstream by the flow. Insight into the distinct stabilisation characteristics, exhibited by the different Lewis number cases, is given by examining the relationship between the local flow velocity and the edge propagation speed.  相似文献   

6.
Premixed counterflow flames with thermally sensitive intermediate kinetics and radiation heat loss are analysed within the framework of large activation energy. Unlike previous studies considering one-step global reaction, two-step chemistry consisting of a chain branching reaction and a recombination reaction is considered here. The correlation between the flame front location and stretch rate is derived. Based on this correlation, the extinction limit and bifurcation characteristics of the strained premixed flame are studied, and the effects of fuel and radical Lewis numbers as well as radiation heat loss are examined. Different flame regimes and their extinction characteristics can be predicted by the present theory. It is found that fuel Lewis number affects the flame bifurcation qualitatively and quantitatively, whereas radical Lewis number only has a quantitative influence. Stretch rates at the stretch and radiation extinction limits respectively decrease and increase with fuel Lewis number before the flammability limit is reached, while the radical Lewis number shows the opposite tendency. In addition, the relation between the standard flammability limit and the limit derived from the strained near stagnation flame is affected by the fuel Lewis number, but not by the radical Lewis number. Meanwhile, the flammability limit increases with decreased fuel Lewis number, but with increased radical Lewis number. Radical behaviours at flame front corresponding to flame bifurcation and extinction are also analysed in this work. It is shown that radical concentration at the flame front, under extinction stretch rate condition, increases with radical Lewis number but decreases with fuel Lewis number. It decreases with increased radiation loss.  相似文献   

7.
We have studied flame propagation in a strained mixing layer formed between a fuel stream and an oxidizer stream, which can have different initial temperatures. Allowing the Lewis numbers to deviate from unity, the problem is first formulated within the framework of a thermo-diffusive model and a single irreversible reaction. A compact formulation is then derived in the limit of large activation energy, and solved analytically for high values of the Damköhler number. Simple expressions describing the flame shape and its propagation velocity are obtained. In particular, it is found that the Lewis numbers affect the propagation of the triple flame in a way similar to that obtained in the studies of stretched premixed flames. For example, the flame curvature determined by the transverse enthalpy gradients in the frozen mixing layer leads to flame-front velocities which grow with decreasing values of the Lewis numbers.

The analytical results are complemented by a numerical study which focuses on preferential-diffusion effects on triple flames. The results cover, for different values of the fuel Lewis number, a wide range of values of the Damköhler number leading to propagation speeds which vary from positive values down to large negative values  相似文献   

8.
9.
We examine the cellular instabilities of laminar non-premixed diffusion flames that arise in a polycrystalline alumina microburner with a channel wall gap of dimension 0.75 mm. Changes in the flame structure are observed as a function of the fuel type (H2, CH4, and C3H8) and diluent. The oxidizer is O2/inert. In contrast to previous observations on laminar diffusion flame instabilities, the current instabilities occur in the direction of flow above the splitter plate, and only occur for the heavier fuel types. They are not observed in a H2–O2 mixture, which will only support a continuous laminar flame inside our burner, regardless of the initial mixture strength and whether or not the flame is in near-quenching conditions. The only exception is when helium is added to the H2–O2 mixture, raising the effective Lewis numbers of both components.  相似文献   

10.
Recent experimental investigations have demonstrated that the appearance of particular cellular states in circular non-premixed jet flames significantly depends on a number of parameters, including the initial mixture strength, reactant Lewis numbers, and proximity to the extinction limit (Damköhler number). For CO2-diluted H2/O2 jet diffusion flames, these studies have shown that a variety of different cellular patterns or states can form. For given fuel and oxidizer compositions, several preferred states were found to co-exist, and the particular state realized was determined by the initial conditions. To elucidate the dynamics of cellular instabilities, circular non-premixed jet flames are modeled with a combination of three-dimensional numerical simulation and linear stability analysis (LSA). In both formulations, chemistry is described by a single-step, finite-rate reaction, and different reactant Lewis numbers and molecular weights are specified. The three-dimensional numerical simulations show that different cellular flames can be obtained close to extinction and that different states co-exist for the same parameter values. Similar to the experiments, the behavior of the cell structures is sensitive to (numerical) noise. During the transient blow-off process, the flame undergoes transitions to structures with different number of cells, while the flame edge close to the nozzle oscillates in the streamwise direction. For conditions similar to the experiments discussed, the LSA results reveal various cellular instabilities, typically with azimuthal wavenumber m = 1–6. Consistent with previous theoretical work, the propensity for the cellular instabilities is shown to increase with decreasing reactant Lewis number and Damköhler number.  相似文献   

11.
This study investigates the characteristics of oscillating lifted flames in laminar coflow-jets experimentally and numerically by varying both fuel density (by varying propane and n-butane mixtures) and coflow density (by diluting air with N2/He mixtures). Two different lifted flame oscillation behaviors are observed depending on these parameters: oscillating tribrachial lifted flame (OTLF) and oscillating mode-change lifted flame (OMLF), where a rapid increase in flame radius is observed. The regimes of the two flames are identified from experiments, which shows that OMLF occurs only when the effect of the negative buoyancy on the flow field by the fuel heavier than air becomes significant at low fuel jet velocity. OMLFs are also identified to distinguish OTLF regime from flame extinction, which implies that an OMLF can be extinguished when the positive buoyancy becomes weak, losing its stabilizing effect, or when the negative buoyancy becomes strong, further enhancing its destabilizing effect. Transient numerical simulations of both OTLF and OMLF reveal that the OMLF occurs by a strong toroidal vortex and a subsequent counterflow-like structure induced by relatively-strong negative buoyancy. Such a drastic flow redirection significantly changes the fuel concentration gradient such that the OMLF changes its mode from a tribrachial flame mode (decreasing edge speed with fuel concentration gradient) to the premixed flame-like transition mode when the fuel concentration gradient becomes very small (increasing edge speed with fuel concentration gradient). Again, a tribrachial flame mode is recovered during a rising period of flame edge and repeats an oscillation cycle.  相似文献   

12.
Using a detailed two-dimensional numerical model, a systematic investigation has been made to study the effect of fuel Lewis number (LeF = α/DF) and mass transfer on flame spread over thin solids. The fuel Lewis number affects the flame spread rates for both concurrent and opposed flames over thin fuels. The dependence of the flame spread rate on LeF for these two spreading modes is, however, not the same. In opposed flame spreads (zero-gravity, self-propagation, and normal gravity downward propagation), the flame spread rate vs. LeF curve is non-monotonic with a maximum value occurring at an intermediate value of LeF = 0.5. In steady, concurrent spread in zero-gravity with low-speed flow and a constant flame length, the flame spread rate decreases with LeF in a monotonic manner. By using the computational model as a tool, the effects of fuel mass diffusion perpendicular to and parallel with the solid surface are isolated to obtain more physical insight on the two-dimensional aspect of fuel mass transfer on flame spread. In addition, the model has also been used to decouple the solid evaporation process so that the fuel diffusion effect in the gas-phase can be isolated. Both of these theoretical exercises contribute to the understanding of mass transfer effects on the flame spreading phenomena over solids.  相似文献   

13.

To evaluate the effect of vorticity usually generated by curved flames on the flame stability, laminar premixed planar flames inclined in the gravitational field is asymptotically examined. The flame structure is resolved by a large activation energy asymptotics and a long wave approximation. The coupling between hydrodynamics and diffusion processes is included and near-unity Lewis number is assumed. The results show that as the flame is more inclined from the horizontal plane it shows more unstable characteristics due to not only the decrease of the stabilizing effect of gravity but also the increase of the destabilizing effect of rotational flow. Unlike the planar flame propagating downward with the right angle to the upstream flow, the obtained dispersion relation involves the Prandtl number and shows the destabilizing effect of viscosity. The analysis predicts that the phase velocity of unstable wave depends on the Lewis number as well as the flame angle and, especially for unity Lewis number, it is the same with tangential velocity at the reaction zone. For relatively short wave disturbances, still much larger than flame thickness, the most unstable wavelength is nearly independent on the flame angle and the flame can be stabilized by gravity and diffusion mechanism.  相似文献   

14.
The stabilization and dynamics of an edge-flame in the corner region of two mutually perpendicular streams, one of fuel and the other of oxidizer, is studied within the context of a diffusive-thermal model, with an imposed flow satisfying the Navier-Stokes equations. The formulation allows for non-unity Lewis numbers and finite rate chemistry with an Arrhenius dependence on temperature. Two flow configurations, corresponding to inlet velocity profiles of uniform speed and of constant strain, have been examined. The results identify the dependence of the flame standoff distance on the flow as well as on the properties of the mixture, including the Damköhler D and Lewis numbers. For high flow rates, or small enough D, sufficient pre-mixing occurs in front of the edge-flame, which consequently takes on a tribrachial structure consisting of two premixed branches, one lean and one rich, with a trailing diffusion flame sheet. For large D, however, there is no enough premixing and the chemical reaction occurs in a small kernel very close to the corner, much like a local thermal explosion; further downstream the reaction occurs along a diffusion flame sheet that extends along the symmetry axis. The present results also predict the onset of spontaneous oscillations when the Lewis numbers are sufficiently large provided the flow rate is sufficiently high, or D reduced below a critical value. Oscillations are first sustained when D is reduced below criticality, but depending on the flow conditions, they are either damped leading to flame re-stabilization, or amplified leading to blow-off.  相似文献   

15.
针对某支板火焰稳定结构数值研究了二维超音速流动和燃烧规律,提出不同燃料供给方案,比较了采用全氢气、全甲烷和不同比例的混合燃气等情况下的燃烧性能.结果表明:单一燃料时,氢气超燃性能很好,但会出现热量雍塞,而甲烷无法燃烧,两种混合燃料方案均在燃烧室内出现了稳定的火焰,但氧气消耗率不理想,基于上述结论给出了一些提高超燃性能的改进措施.  相似文献   

16.

Ignition and flame propagation for pyrolysing fuel in a cylindrical enclosure has been examined in this study. The pyrolysing fuel of cylindrical shape was located both eccentrically and concentrically inside an outer cylinder that was sustained at high temperature. Due to gravity, buoyancy motion was inevitably incurred in the enclosure, and this was found to affect the flame initiation and propagation behaviour. Radiative heat transfer also played an important role in the thermo-fluid mechanical behaviour because of the high temperature involved in the problem. Numerical studies have been performed for various parameters such as the Grashof number, overheat ratio, gas absorption coefficient and vertical fuel eccentricity. The flame behaviour and initiation were observed to be totally different depending on the Grashof number. Due to absorbed radiant energy, the radiative gas played a significant role in flame evolution. The location of flame onset was also affected by both the vertical eccentricity of the inner pyrolysing fuel and the thermal conditions applied. The heating process and the flow field development were found to govern flame initiation and propagation.  相似文献   

17.

Dynamics of flame kernel evolution with and without external energy addition has been investigated analytically and numerically. Emphasis is placed on the effects of radiation heat loss, ignition power and Lewis number on the correlation and transition between the initial flame kernel, the self-extinguishing flame, the flame ball, the outwardly propagating spherical flame and the propagating planar flame. The present study extends previous results by bridging the theories of the non-adiabatic stationary flame balls and travelling flames and allowing rigorous consideration of radiation heat losses. The results show that the effects of radiation heat loss play an important role in flame regimes and flame transition and result in a new isolated self-extinguishing flame. Furthermore, it is found that radiation heat losses significantly increase the critical ignition radius and result in three different dependences of the minimum ignition power on the Lewis number. Comparisons between the results from the transient numerical simulation and those from the quasi-steady state analysis show a good agreement. The results suggest that prediction of flame initiation without appropriate consideration of radiation is not acceptable.  相似文献   

18.
A comprehensive stability analysis of planar diffusion flames is presented within the context of a constant-density model. The analysis provides a complete characterization of the possible patterns that are likely to be observed as a result of differential and preferential diffusion when a planar flame becomes unstable. A whole range of physical parameters is considered, including the Lewis numbers associated with the fuel and the oxidizer, the initial mixture fraction, and the flow conditions. The two main forms of instability are cellular flames, obtained primarily in fuel-lean systems when the Lewis numbers are generally less than one, and planar pulsations, obtained in fuel-rich systems when the Lewis numbers are generally larger than one. The cellular instability is predominantly characterized by stationary cells of characteristic dimension comparable to the diffusion length, but smaller cells that scale on the reaction zone thickness are also possible near extinction conditions. The pulsating instability is characterized by planar oscillations normal to the flame sheet with a well-defined frequency comparable to the reciprocal of the diffusion time; high-frequency modes are also possible just prior to extinction. The analysis also alludes to other possible patterns, such as oscillating cellular structures, which result from competing modes of instability of comparable and/or disparate scales. The expected pattern depends of course on the underlying physical parameters. Consequently, stability boundaries have been identified for the onset of one or another form of the instability. The conditions for the onset of cellular and pulsating flames, as well as the predicted cell size and the frequency of oscillations, compare well with the experimental record.  相似文献   

19.
We have investigated the downward flame spread over a thin solid fuel. Hydrogen, methane, or propane, included in the gaseous product of pyrolysis reaction, is added in the ambient air. The fuel concentration is kept below the lean flammability limit to observe the partially premixing effect. Both experimental and numerical studies have been conducted. Results show that, in partially premixed atmospheres, both blue flame and luminous flame regions are enlarged, and the flame spread rate is increased. Based on the flame index, a so-called triple flame is observed. The heat release rate ahead of the original diffusion flame is increased by adding the fuel, and its profile is moved upstream. Here, we focus on the heat input by adding the fuel in the opposed air, which could be a direct factor to intensify the combustion reaction. The dependence of the flame spread rate on the heat input is almost the same for methane and propane/air mixtures, but larger effect is observed for hydrogen/air mixture. Since the deficient reactant in lean mixture is fuel, the larger effect of hydrogen could be explained based on the Lewis number consideration. That is, the combustion is surely intensified for all cases, but this effect is larger for lean hydrogen/air mixture (Le < 1), because more fuel diffuses toward the lean premixed flame ahead of the original diffusion flame. Resultantly, the pyrolysis reaction is promoted to support the higher flame spread rate.  相似文献   

20.
The response of a dynamical flame model to imposed acoustic accelerations is studied analytically and numerically. Through linear stability analyses, two analytical approximations for the primary and the parametric stability boundaries are found. The approximation for the primary instability boundary is accurate for any periodic accelerations, in the limit of large acoustic frequencies. The critical acoustic amplitude u a for Landau–Darrieus instability suppression is identified and found to depend only on the density contrast and the shape of the periodic acoustic stimuli. The proposed model evolution equation is next integrated numerically with various imposed acoustic accelerations; the primary and parametric flame responses are identified. It is shown analytically and numerically that in the presence of a fully developed, yet weakened by acoustics, Landau–Darrieus (or primary) instability the wrinkle amplitude and the mean flame speed oscillate at the same frequency as the acoustic stimuli; the threshold for suppression of primary instability by acoustic forcing is determined exactly. Increasing the acoustic amplitude allows the flame to respond parametrically to the acoustics. This response is characterised by troughs and crests interchanging their roles while the mean flame speed again oscillates with the same frequency as the acoustic stimuli and at twice that of wrinkle amplitude oscillations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号