首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As the hydroxyl (OH) and perhydroxyl (OOH) radicals are known to play important roles in biological systems, their reactions with cytosine and thymine were studied. Addition reactions of these radicals at different sites of cytosine and thymine, and hydrogen abstraction reactions by each of the two radicals from the different sites of the two molecules were studied at the B3LYP/6‐31G(d,p), B3LYP/AUG‐cc‐pVDZ and BHandHLYP/AUG‐cc‐pVDZ levels of density functional theory. Effect of solvation in aqueous media on the reactions was studied at all these levels of theory using single point energy calculations using the polarizable continuum model. The present study shows that whereas the OH radical would abstract H atoms from the various sites of cytosine and thymine efficiently, the OOH radical would have poor reactivity in this regard. The OH radical is also predicted to be much more reactive than the OOH radical with regard to addition reactions at the C5 and C6 sites of both thymine and cytosine, though the OOH radical is also predicted to have significant reactivity in this respect. © 2012 Wiley Periodicals, Inc.  相似文献   

2.
Free radical reactions induced by the photolysis of the lignin model compound α-guaiacoxylacetoveratrone have been studied by conventional and time-resolved ESR spectroscopy. In the presence of efficient hydrogen donors such as aqueous and hydroxylic solvents the primary reaction involves photoreduction of the triplet phenacyl ether to form the ketyl radical followed by rapid cleavage to the phenacyl radical and guaiacol. Subsequent formation of polarized guaiacoxyl radicals is due to secondary photo-oxidation. The cleavage of the ketyl radical is retarded in basic media and accelerated in acetic acid. Minor reaction pathways involving excited singlets cannot be ruled out by the current CIDEP observations.  相似文献   

3.
A simultaneous electrochemical-electron spin resonance(SEESR)cell has been designed. It is easily fabricated and operated and can be used for either aqueous or nonaqueous determation.Using this aparatus, the ESR signals were observed for nitrobenzcne anion radicals, produced by constant potential electrolysis of nitrobenzene in acetonitrile media with 0.1M TBAP as electrolyte and in 0.5M KCl aqueous solution respectively. The hyperfine coupling constants of the nitrobenzene anion radical have been estimated which are in accordance with the literature values.  相似文献   

4.
Photoinduced free radical polymerization of vinyl monomers by using semiconductor inorganic nanoparticles (NPs) is investigated. Zinc oxide and iron‐doped zinc oxide were used as photosensitive compounds to initiate the polymerization of acrylamide as a water‐soluble monomer in aqueous environment and methyl methacrylate as an oil‐soluble monomer in organic media under UV‐light irradiation. The method uses photochemically generated electrons and holes from the NPs to form initiating hydroxyl radicals in aqueous media, while tertiary amines and iodonium salt served as coinitiator in organic media. The initiation mechanism in organic media involves hydrogen abstraction or reduction processes via charge carriers, respectively. The kinetic of the polymerization in both environments was studied by means of a photo‐differential scanning calorimetry. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1500–1507  相似文献   

5.
In this work, we have carried out a systematic study of the antioxidant activity of trans-resveratrol toward hydroxyl ((?)OH) and hydroperoxyl ((?)OOH) radicals in aqueous simulated media using density functional quantum chemistry and computational kinetics methods. All possible mechanisms have been considered: hydrogen atom transfer (HAT), proton-coupled electron transfer (PCET), sequential electron proton transfer (SEPT), and radical adduct formation (RAF). Rate constants have been calculated using conventional transition state theory in conjunction with the Collins-Kimball theory. Branching ratios for the different paths contributing to the overall reaction, at 298 K, are reported. For the global reactivity of trans-resveratrol toward (?)OH radicals, in water at physiological pH, the main mechanism of reaction is proposed to be the sequential electron proton transfer (SEPT). However, we show that trans-resveratrol always reacts with (?)OH radicals at a rate that is diffusion-controlled, independent of the reaction pathway. This explains why trans-resveratrol is an excellent but very unselective (?)OH radical scavenger that provides antioxidant protection to the cell. Reaction between trans-resveratrol and the hydroperoxyl radical occurs only by phenolic hydrogen abstraction. The total rate coefficient is predicted to be 1.42 × 10(5) M(-1) s(-1), which is much smaller than the ones for reactions of trans-resveratrol with (?)OH radicals, but still important. Since the (?)OOH half-life time is several orders larger than the one of the (?)OH radical, it should contribute significantly to trans-resveratrol oxidation in aqueous biological media. Thus, trans-resveratrol may act as an efficient (?)OOH, and also presumably (?)OOR, radical scavenger.  相似文献   

6.
Laser flash photolysis (266 nm) of alpha- and beta-phenylselenyl esters, carboxylic acids, and carboxylates in aqueous acetonitrile media gave the corresponding radicals by homolytic cleavage of the phenylselenyl groups. In the beta-substituted systems, acid and carboxylate radicals reacted in intramolecular reporter reactions with approximately equal rate constants. For the alpha-substituted systems, an ester- and carboxylic acid-substituted radical reacted in an intramolecular reporter reaction with the same rate constants, but the analogous alpha-carboxylate radical, a radical anion, reacted an order of magnitude less rapidly and with an activation energy that is 3 kcal/mol greater than that found for analogues. A kinetic titration of the equilibrating alpha-acid and alpha-carboxylate radicals gave pKa = 4.6. The results indicate that alpha-ester and alpha-carboxylic acid radicals are unlikely to be appropriate models for alpha-carboxylate radicals, the intermediates formed in a large subset of coenzyme B12-dependent enzyme-catalyzed reactions.  相似文献   

7.
Quaternary ammonium and phosphonium salts catalyze reactions between substances located partly in an aqueous and partly in an organic phase. Use of such phase-transfer catalysts simplifies and accelerates numerous reactions traditionally conducted in nonaqueous media. These reactions include carbene reactions, nucleophilic substitutions, alkylations of ketones and nitriles, Wittig and Darzens reactions, formation of ethers and esters. Other reactions such as hydrolysis and oxidation can be accelerated.  相似文献   

8.
The photopolymerization of several di- and tetrafunctional (meth)acrylic monomers in the presence of a styrene–butadiene–styrene polymeric matrix (SBS) has been studied. Electron spin resonance spectroscopy (ESR) and differential scanning photocalorimetry (photo-DSC) were used as monitoring techniques to identify the photogenerated radicals and analyze photopolymerization profiles, radical environments, and radical secondary reactions. The study of the photopolymerization and/or photocrosslinking reactions of these monomers in the solid media was carried out by taking into consideration different factors, such as the influence of both monomer and photoinitiator structures on the hydrogen abstraction in the binder with formation of benzylic and allylic radicals, the polymerization of the monomers itself and the hydrogen abstraction reaction in the polymerized acrylic chains. Finally, irradiation of the system SBS/photoinitiator in the absence of monomer was also accomplished. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 2775–2783, 1998  相似文献   

9.
In aqueous solutions at physiological temperature, the mechanism of antioxidative action of natural thiols (glutathione, cysteine, and homocysteine) mainly involves reactions with reactive oxygen species (ROS), peroxyl radicals and hydrogen peroxide. Reduction of hydrogen peroxide by thiols is accompanied by radical generation. The kinetic characteristics of these processes, including those for the reactions of hydrogen peroxide and glutathione immobilized on solid supports such as sodium montmorillonite (clay) and cellulose were determined. Prooxidative effects of thiols are related with the reactions of thiyl radicals formed in the exchange reactions of thiols with other radicals and in the reactions between thiols and hydroperoxides. Thiyl radicals are known to react easily with double bonds. Resveratrol and caffeic acid, phenolic antioxidants containing double bond in their molecules, were shown to be consumed when reacted with glutathione and the process accelerated in the presence of hydrogen peroxide.  相似文献   

10.
Mechanisms of hydrogen atom abstraction reactions of the sugar moiety of 2′‐deoxyguanosine with an OH radical were investigated using the B3LYP and BHandHLYP functionals of density functional theory and the second order Møller–Plesset Perturbation (MP2) theory in gas phase and aqueous media. The 6‐31+G* and AUG‐cc‐pVDZ basis sets were used. Gibbs free barrier energies and rate constants of the reactions in aqueous media suggest that an OH radical would abstract the hydrogen atoms of the sugar moiety of 2′‐deoxyguanosine in the following order of preference: H5′ ≈ H5″ > H3′ > H4′ > H1′ ≈ H2′ > H2″, the rate constant for H5′ abstraction being 103–105 times greater than that for H2″ at the different levels of theory. Relative stabilities of the different deoxyribose radicals are also discussed. The most and least favored hydrogen abstraction reactions found here are in agreement with experimental observation. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

11.
Abstract— Primary and secondary photochemical processes in oxygen-free aqueous solution have been characterised for FMN alone and in the presence of EDTA and four amino acids using nanosecond and microsecond flash photolysis and continuous photolysis techniques. The relative contributions of oneelectron and two-electron (group or hydride transfer) reactions to the deactivation of the triplet has been determined by comparing the radical concentration (560 nm) with the bleaching of the ground state (446 nm). It was concluded that one-electron reactions (hydrogen atom or electron abstraction) are the major mode of reactivity of the flavin triplet state with all the suhstrates studied.
The nature of the reactions of the flavin semiquinone radical have been studied quantitatively by microsecond flash photolysis. These secondary reactions consist of either a 'back reaction' between the flavin and substrate radicals (tryptophan or glycyl-tyrosine) or the transfer of a second electron (or hydrogen atom) from the substrate radical to the flavin radical (EDTA, methionine and possibly cysteine) to form reduced flavin and oxidised substrate. From a comparison of the quantum yields of formation of reduced flavin using 'flash' and continuous irradiation, an additional pathway for the decay of the flavin radical is suggested to occur at low light intensities in the presence of glycyl-tyrosine or histidine.  相似文献   

12.
ESR measurements of transient radicals during redox polymerization of various vinyl esters in aqueous solutions have been made by using the rapid-mixing flow method. The initiation was by means of hydroxyl and amino radicals from the systems titanous chloride-hydrogen peroxide and titanous chloride-hydroxylamine, respectively. The well resolved hyperfine structures obtained at monomer concentrations of about 0.05 mole/1. are unambiguously assigned to the monomer radicals formed by addition of initiator radicals to monomers. At higher monomer concentrations, additional weak signals attributed to the growing polymer radicals were observed. The effect of reaction conditions on the signal intensity has been studied in particular for vinyl acetate. The coupling constants of monomer radicals from various vinyl esters (acetate, propionate, butyrate, crotonate, and isopropenyl acetate) were obtained and the spin densities calculated. From the ESR spectra, the monomer radicals have a conformation with the substituent R (R = HO or NH2) of R? CH2? CH(OCOR′) locked in a position above or below the radical plane. This is tentatively interpreted as due to formation of intramolecular hydrogen bonds to ring structures or complexes with titanium ions. In addition, hydrogen abstraction reactions of some model compounds for poly(vinyl acetate) have been briefly studied in relation to chain transfer and grafting reactions.  相似文献   

13.
Curcumin is known to be an antioxidant, as it can scavenge free radicals from biological media. A sequence of H-abstraction and addition reactions involving up to eight OH radicals and curcumin or its degradation products leading to the formation of two other antioxidants, namely, ferulic acid and vanillin, was studied. Single electron transfer from curcumin to an OH radical was also studied. All relevant extrema on the potential energy surfaces were located by optimizing geometries of the reactant and product complexes, as well as those of the transition states, at the BHandHLYP/6-31G(d,p) level of density functional theory in the gas phase. Single-point energy calculations were also performed in the gas phase at the BHandHLYP/aug-cc-pVDZ and B3LYP/aug-cc-pVDZ levels of theory. Solvent effects in aqueous media were treated by performing single-point energy calculations at all of the above-mentioned levels of theory employing the polarizable continuum model and the geometries optimized at the BHandHLYP/6-31G(d,p) level in the gas phase. A few reaction steps were also studied by geometry optimization in aqueous media, and the thus-obtained Gibbs free energy barriers were similar to those obtained by corresponding single-point energy calculations. Our calculations show that the hydrogen atom of the OH group attached to the phenol moiety of curcumin would be most efficiently abstracted by an OH radical, in agreement with experimental observations. Further, our study shows that OH addition would be most favored at the C10 site of the heptadiene chain. It was found that curcumin can serve as an effective antioxidant.  相似文献   

14.
Abstract The Primary reactions of the cosin-and fluorescein-photosensitized autoxidation of L-tyrosine were studied in aqueous media (pH = 8.6) by the flash-photolysis technique. The dye molecules were quantitatively converted to their triplet states in a single flash. The triplet dye molecules were found to react with tyrosine or oxygen. Ground state or radical dye molecules were formed in these reactions. Some 40 per cent of the triplet-tyrosine reactions yielded radicals, in triplet dye-oxygen reactions the corresponding yield was less than 10 per cent. The ground state dye was regenerated from the semireduced dye in reactions with oxygen and from the semioxidized dye in reactions with tyrosine. In the absence of oxygen the radicals formed in the photoinduced electron-transfer between the triplet dye and tyrosine recombined to a large extent.  相似文献   

15.
Solvent based extractions of used nuclear fuel use designer ligands in an organic phase extracting ligand complexed metal ions from an acidic aqueous phase. These extractions will be performed in highly radioactive environments, and the radiation chemistry of all these complexants and their diluents will play a major role in determining extraction efficiency, separation factors, and solvent-recycle longevity. Although there has been considerable effort in investigating ligand damage occurring in acidic water radiolysis conditions, only minimal fundamental kinetic and mechanistic data has been reported for the degradation of extraction ligands in the organic phase. Extraction solvent phases typically use normal alkanes such as dodecane, TPH, and kerosene as diluents. The radiolysis of such diluents produce a mixture of radical cations (R•+), carbon-centered radicals (R), solvated electrons, and molecular products such as hydrogen. Typically, the radical species will preferentially react with the dissolved oxygen present to produce relatively inert peroxyl radicals. This isolates the alkane radical cation species, R•+ as the major radiolytically-induced organic species that can react with, and degrade, extraction agents in this phase. Here we report on our recent studies of organic radical cation reactions with various ligands. Elucidating these parameters, and combining them with the known acidic aqueous phase chemistry, will allow a full, fundamental, understanding of the impact of radiation on solvent extraction based separation processes to be achieved.  相似文献   

16.
There exists an urgent need to monitor radical reactions in biological membranes. With the exception of a few studies in model and natural membranes, most biological spin trapping reactions have been confined to homogeneous media. In the present work we have devised a methodology by which spin trapping reactions can be investigated in liposomes composed of a fully-saturated phospholipid, dimyristoylphosphatidylcholine. Using photochemical spin trapping, we have detected and characterized the formation and partitioning of spin adducts in liposomes. Benzophenone (a lipid-soluble photosensitizer) and benzoyl peroxide (a lipid-soluble radical initiator) have been used to generate free radicals from hydrogen donors during photolysis in liposomes. Both water-soluble and lipid-soluble spin traps have been used to trap the radicals.  相似文献   

17.
Whenever free radicals are formed, independent of whether this occurs thermally, is induced by UV or ionizing irradiation, or takes place in redox reactions, they are converted rapidly into the corresponding peroxyl radicals in the presence of oxygen. Peroxyl radical reactions in aqueous environments are observed not only in aquatic systems (e.g., rivers, lakes and oceans) but also in the living cell and to a considerable degree even in the atmosphere (in water droplets). The peroxyl radical chemistry occurring in this medium is often very different from that observed in the gas phase or in organic solvents. In spite of the great importance of these reactions in medicine (for example in anti-cancer irradiation therapy and ischaemia) there have been comparatively few studies of peroxyl reactions in aqueous media. Radiation-chemical techniques such as pulse radiolysis offer the best means for carrying out such studies, so that it is not surprising that the majority of the information available in this area has been obtained with the help of radiation-chemical methods. The radiation chemistry of water can be con trolled in such a manner that the main products are ˙OH radicals (90 % yield), which react with substrate molecules to give substrate radicals and in the presence of oxygen to give substrate peroxyl radicals. The experimental conditions can also be varied in such a way that HO/O radicals can be formed in 100 % yield and caused to react with substrates. We therefore have a simple access to these intermediates, which are extremely important in biological systems. A detailed product analysis, supported by kinetic studies carried out with the help of pulse radiolysis, has been used to clarify the chemistry of a series of peroxyl radicals, so that sufficient material is now available to justify a review of the variety of the peroxyl radical reactions studied by means of radiation-chemical methods. A more general survey of the physical properties of the peroxyl radicals and their unimolecular and bimolecular reactions will be followed by a discussion of selected examples of various classes of substance. Because of the great biological importance of radical-induced DNA damage this area will also be treated briefly.  相似文献   

18.
《Analytical letters》2012,45(20):2291-2300
Abstract

The polarographic behavior of some organic dyes such as nitro-benzo-triazol, amino-nitro-benzo-triazol, benzo-triazol azo thionaphthene carboxylic acid and 5-methyl imidazol 2-methyl benzo-triazol in aqueous buffered media has been studied. The results reveal that the reduction reactions occurred irreversibly under diffusion-control. The reduction mechanism of nitro-benzo-triazol and amino-nitro-benzo-triazol involve the consumption of six electrons in the form of one wave in acid and two waves in alkaline media. The electro-reduction of benzo-triazol azo thionsphthene carboxylic acid consumes four electrons. The mechanism proposed for that compound indicates that the triazol centre forms a radical as an intermediate state in alkaline medium. The reduction process of 5-methyl imidazole 2-methyl benzo-triazol contains two consumed electronic in acid media while four electrons are consumed in alkaline media.  相似文献   

19.
Hydroxyaryl alkyl tellurides are effective antioxidants both in organic solution and aqueous biphasic systems. They react by an unconventional mechanism with ROO. radicals with rate constants as high as 107 M ?1 s?1 at 303 K, outperforming common phenols. The reactions proceed by oxygen atom transfer to tellurium followed by hydrogen atom transfer to the resulting RO. radical from the phenolic OH. The reaction rates do not reflect the electronic properties of the ring substituents and, because the reactions occur in a solvent cage, quenching is more efficient when the OH and TeR groups have an ortho arrangement. In the presence of thiols, hydroxyaryl alkyl tellurides act as catalytic antioxidants towards both hydroperoxides (mimicking the glutathione peroxidases) and peroxyl radicals. The high efficiency of the quenching of the peroxyl radicals and hydroperoxides could be advantageous under normal cellular conditions, but pro‐oxidative (thiol depletion) when thiol concentrations are low.  相似文献   

20.
The reaction products of photolysis of acetic anhydride in gas phase at 25°C, where He or CO2 was present as buffer gas, were analyzed by gas chromatography. The extent of photodissociation was 52% ± 5% and the extent of intramolecular hydrogen transfer reaction producing acetic acid and ketene was 48% ± 5%. The rate constants of the hydrogen exchange and radical combination reactions between methyl and acetyl radicals were calculated from the amounts of products. The value of the ratio of the rate constants of hydrogen exchange and radical combination reactions between methyl and acetyl radicals, ??7/??6 = 0.15, indicates that acetyl radical is a relatively poor hydrogen donor. The corresponding ratio of rate constants for the reactions between two acetyl radicals, ??9/??s = 0.42, indicates that acetyl radical is a better hydrogen acceptor than methyl radical.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号