首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 4 毫秒
1.
Perrin  P.  Monfreux  N.  Dufour  A. L.  Lafuma  F. 《Colloid and polymer science》1998,276(10):945-948
Highly hydrophobically modified (with n-dodecylamide chain) linear poly(acrylic acid)s (HHMPAAH) and poly(sodium acrylate)s (HHMPAANa) with various degrees of grafting (τ) were synthesized and used as emulsifiers of the n-dodecane/water system. The type of emulsion, oil in water (O/W) or water in oil (W/O), was investigated as a function of the polymer chemical structure (τ, salt or acid form of the copolymer) and aqueous phase electrolyte concentration (NaNO3). Increasing τ and/or salt concentration was found to favor the formation of inverse emulsions. Direct liquid–liquid dispersions are more likely to form with poly(sodium acrylate)s than with poly(acrylic acid)s. Hence, field variables such as τ, pH and ionic strength are relevant parameters to control emulsion type. Moreover, a balanced polyelectrolyte neither soluble in oil nor in water was synthesized for the first time. With this original emulsifier, the dispersion type was found to change from O/W to W/O with polymer salting out. The work provides convenient model system for fundamental studies of polymer conformation at liquid–liquid interfaces. Received: 31 March 1998 Accepted: 30 April 1998  相似文献   

2.
Carboxymethylcellulose with 1.2% dodecyl groups (per glucose unit) was prepared by amidation with dodecylamine. This polymer behaves as a hydrophobically modified polyelectrolyte with the following thickening properties which are determined from viscosity data. It adsorbs from aqueous solution on spin-coated polystyrene films to various extents, depending on pH and ionic strength. The adsorbed amount has a surprising minimum at around pH 6 which coincides with a maximum in viscosity of a dilute solution, and with a very pronounced maximum in the hydrodynamic radius as determined from dynamic light scattering. To our knowledge, such behavior has not been reported before. It suggests that at low pH the polymer is present in the form of small aggregates which upon increasing the pH first swell and then break up into single molecules. Received: 19 June 1997 Accepted: 5 January 1998  相似文献   

3.
This work demonstrates the fabrication of terpene based sustainable methacrylate polymers by an environmentally benign emulsion polymerization method. The polymerization reaction has been found to be influenced by the side chain length of the methacrylate(s), which has been quantitatively calculated from the density functional theory. Apart from the analysis of the copolymer microstructure, various properties of the synthesized polymers have been studied and correlated with the structure of the methacrylate(s). The sub‐ambient glass transition temperature indicates rubbery nature of the synthesized copolymers. While the presence of residual unsaturations from the terpene moiety could act as an additional crosslinking site, the methacrylate group may facilitate the dispersion of polar additives. The completely new class of terpene‐based sustainable rubbery methacrylate polymers is thus envisaged as promising materials for polymer and allied industries. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2639–2649  相似文献   

4.
Block copolymers of polystyrene-b-poly(vinyl benzyl trimethylammonium tetrafluoroborate) (PS-b-[PVBTMA][BF4]) were synthesized by sequential monomer addition using atom transfer radical polymerization. Membranes of the block copolymers were prepared by drop casting from dimethylformamide. Initial evaluation of the microphase separation in these PS-b-[PVBTMA][BF4] materials via SAXS revealed the formation of spherical, cylindrical, and lamellar morphologies. Block copolymers of polystyrene-b-poly(vinyl benzyl trimethylammonium hydroxide) (PS-b-[PVBTMA][OH]) were prepared as polymeric alkaline anion exchange membranes materials by ion exchange from PS-b-[PVBTMA][BF4] with hydroxide in order to investigate the relationship between morphology and ionic conductivity. Studies of humidity [relative humidity (RH)]-dependent conductivity at 80 °C showed that the conductivity increases with increasing humidity. Moreover, the investigation of the temperature-dependent conductivity at RH = 50, 70, and 90% showed a significant effect of grain boundaries in the membranes against the formation of continuous conductive channels, which is an important requirement for achieving high ion conductivity. © 2012 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013, 51, 1751–1760, 2013  相似文献   

5.
The association between hydrophobically modified poly(sodium acrylate) (HMPA) and poly(N-isopropylacrylamide) (PNIPAM) in aqueous solution was studied using turbidimetry, viscometry and fluorescence measurements. Both the polymeric and the amphiphilic nature of the HMPA influence the association process. The tendency for association, as reflected by the increase in the cloud point and the reduced viscosity of PNIPAM, increases with the length of the alkyl group and the degree of substitution of HMPA. The fluorescence study, using pyrene as a probe, ascertains that the association is of hydrophobic nature and the association process is gradual and less cooperative than the association of PNIPAM with ionic surfactants. When high molar mass HMPA is used, the hydrophobic association between HMPA and PNIPAM leads to the formation of a reversible network with significantly enhanced thickening properties as compared to the thickening ability of the corresponding pure HMPA in aqueous solution.  相似文献   

6.
Novel AB2‐type amphiphilic block copolymers of poly(ethylene glycol) and poly(N‐isopropylacrylamide), PEG‐b‐(PNIPAM)2, were successfully synthesized through single‐electron transfer living radical polymerization (SET‐LRP). A difunctional macroinitiator was prepared by esterification of 2,2‐dichloroacetyl chloride with poly(ethylene glycol) monomethyl ether (PEG). The copolymers were obtained via the SET‐LRP of N‐isopropylacrylamide (NIPAM) with CuCl/tris(2‐(dimethylamino)ethyl)amine (Me6TREN) as catalytic system and DMF/H2O (v/v = 3:1) mixture as solvent. The resulting copolymers were characterized by gel permeation chromatography and 1H NMR. These block copolymers show controllable molecular weights and narrow molecular weight distributions (PDI < 1.15). Their phase transition temperatures and the corresponding enthalpy changes in aqueous solution were measured by differential scanning calorimetry. As a result, the phase transition temperature of PEG44b‐(PNIPAM55)2 is similar to that in the case of PEG44b‐PNIPAM110; however, the corresponding enthalpy change is much lower, indicating the significant influence of the macromolecular architecture on the phase transition. This is the first study into the effect of macromolecular architecture on the phase transition using AB2‐type amphiphilic block copolymer composed of PEG and PNIPAM. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4420–4427, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号