首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A rapid, sensitive and specific method for quantifying clonazepam in human plasma using diazepam as the internal standard (IS) is described. The analyte and the IS were extracted from plasma by liquid-liquid extraction using a hexane/diethylether (20 : 80, v/v) solution. The extracts were analysed by high-performance liquid chromatography coupled with electrospray tandem mass spectrometry (HPLC-MS-MS). Chromatography was performed on a Jones Genesis C8 4 microm analytical column (100 x 2.1 mm i.d.). The method had a chromatographic run time of 3.0 min and a linear calibration curve over the range 0.5-50 ng/ml (r2 > 0.9965). The limit of quantification was 0.5 ng/ml. This HPLC/MS/MS procedure was used to assess the bioequivalence of two clonazepam 2 mg tablet formulations (clonazepam test formulation from Ranbaxy Laboratories Ltd and Rivotril from Roche Laboratórios Ltda as standard reference formulation).  相似文献   

2.
A rapid, sensitive and specific method to quantify nevirapine in human plasma using dibenzepine as the internal standard (IS) was developed and validated. The method employed a liquid-liquid extraction. The analyte and the IS were chromatographed on a C(18) analytical column, (150 x 4.6 mm i.d. 4 microm) and analyzed by tandem mass spectrometry in the multiple reaction monitoring mode. The method had a chromatographic run time of 5.0 min and a linear calibration curve over the range 10-5000 ng ml(-1) (r(2) > 0.9970). The between-run precision, based on the relative standard deviation for replicate quality controls was 1.3% (30 ng ml(-1)), 2.8% (300 ng ml(-1)) and 3.6% (3000 ng ml(-1)). The between-run accuracy was 4.0, 7.0 and 6.2% for the above-mentioned concentrations, respectively. This method was employed in a bioequivalence study of two nevirapine tablet formulations (Nevirapina from Far-Manguinhos, Brazil, as a test formulation, and Viramune from Boehringer Ingelheim do Brasil Química e Farmacêutica, as a reference formulation) in 25 healthy volunteers of both sexes who received a single 200 mg dose of each formulation. The study was conducted using an open, randomized, two-period crossover design with a 3 week washout interval. The 90% confidence interval (CI) of the individual ratio geometric mean for Nevirapina/Viramune was 96.4-104.5% for AUC((0-last)), 91.4-105.1% for AUC((0-infinity)) and 95.3-111.6% for C(max) (AUC = area under the curve; C(max) = peak plasma concentration). Since both 90% CI for AUC((0-last)) and AUC((0-infinity)) and C(max) were included in the 80-125% interval proposed by the US Food and Drug Administration, Nevirapina was considered bioequivalent to Viramune according to both the rate and extent of absorption.  相似文献   

3.
A rapid, sensitive and specific analytical method was developed and validated to quantify gabapentin in human plasma using acetaminophen as an internal standard. The method employs a single plasma protein precipitation. The analytes are chromatographed on a C4 reversed-phase chromatographic column and analyzed by mass spectrometry in the multiple reaction monitoring (MRM) mode. The method has a chromatographic run time of 4 min and a linear calibration curve over the range 50-10 000 ng x ml(-1) (r > 0.999). The between-run precision, based on the relative standard deviation for replicate quality controls, was < or = 4.8 % (200 ng x ml(-1)), 6.0% (1000 ng x ml(-1)) and 4.4% (5000 ng x ml(-1)). The between-run accuracy was +/-2.6, 4.4 and 0.5% for the above-mentioned concentrations, respectively. This method was employed in a bioequivalence study of two gabentin capsule formulations (Progresse from Biosintética, Brazil, as a test formulation, and Neurotin from Parke-Davis, as a reference formulation) in 24 healthy volunteers of both sexes who received a single 300 mg dose of each formulation. The study was conducted using an open, randomized, two-period crossover design with a 7-day washout interval. The 90% confidence interval (CI) of the individual ratio geometric mean for Progresse/Neurotin was 87.9-115.6% for AUC(0-36 h) and 88.6-111.7% for Cmax. Since both 90% CI for AUC(0-36 h) and Cmax were included in the 80-125% interval proposed by the US Food and Drug Administration, Progresse was considered bioequivalent to Neurotin according to both the rate and extent of absorption.  相似文献   

4.
A rapid, sensitive and specific method to quantify cyproheptadine in human plasma using amitriptyline as the internal standard (IS) is described. The analyte and the IS were extracted from plasma by liquid‐liquid extraction using a diethyl‐ether/dichloromethane (70/30; v/v) solvent. After removing and drying the organic phase, the extracts were reconstituted with a fixed volume of acetonitrile/water (50/50 v/v) + 0.1% of acetic acid. The extracts were analyzed by high performance liquid chromatography coupled to electrospray tandem mass spectrometry (LC‐MS/MS). Chromatography was performed isocratically using an Alltech Prevail C18 5 µm analytical column, (150 mm x 4.6 mm I.D.). The method had a chromatographic run time of 4 min and a linear calibration curve ranging from 0.05 to 10 ng/mL (r2 > 0.99). The limit of quantification was 0.05 ng/mL. This HPLC/MS/MS procedure was used to assess the bioequivalence of cyproheptadine in two cyproheptadine + cobamamide (4 mg + 1 mg) tablet formulations (Cobactin® [cyproheptadine + cobamamide] test formulation supplied from Zambon Laboratórios Farmacêuticos Ltda. and Cobavital® from Solvay Farma (standard reference formulation)). A single 4 mg + 1 mg [cyproheptadine + cobamamide] dose of each formulation was administered to healthy volunteers. The study was conducted using an open, randomized, two‐period crossover design with a 1‐week washout interval. Since the 90% CI for Cmax and AUCs ratios were all within the 80‐125% bioequivalence limit proposed by the US Food and Drug Administration, it was concluded that the cyproheptadine test formulation (Cobactin®) is bioequivalent to the Cobavital® formulation for both the rate and the extent of absorption of cyproheptadine. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
A simple method using a one-step liquid-liquid extraction (LLE) followed by high-performance liquid chromatography (HPLC) with positive ion electrospray ionization tandem mass spectrometric (ESI-MS/MS) detection was developed for the determination of bromazepam in human plasma, using lorazepam as internal standard. The acquisition was performed in the multiple reaction monitoring mode, monitoring the transitions: m/z 316 > 182 for bromazepam and m/z 321 > 275 for lorazepam. The method was linear over the studied range (1-100 ng ml(-1)), with r(2) > 0.98, and the run time was 2.5 min. The intra- and inter-assay precisions were 2.7-14.6 and 4.1-17.3%, respectively and the intra- and inter-assay accuracies were 87-111 and 75.8-109.5%, respectively. The mean recovery was 73.7%, ranging from 64.5 to 79.7%. The limit of quantification was 1 ng ml(-1). At this concentration the mean intra- and inter-assay precisions were 14.6 and 7.1%, respectively, and the mean intra- and inter-assay accuracies were 102.5 and 104%, respectively. Bromazepam stability was evaluated and the results showed that the drug is stable in standard solution and in plasma samples under typical storage and processing conditions. The method was applied to a bioequivalence study in which 27 healthy adult volunteers (14 men) received single oral doses (6 mg) of reference and test bromazepam formulations, in an open, two-period, randomized, crossover protocol. The 90% confidence interval of the individual ratios (test formulation/reference formulation) for C(max) (peak plasma concentration), AUC(0-96) and AUC(0-inf) (area under the plasma concentration versus time curve from time zero to 96 h and to infinity, respectively) were within the range 80-125%, which supports the conclusion that the test formulation is bioequivalent to the reference formulation regarding the rate and extent of bromazepam absorption.  相似文献   

6.
A sensitive and specific liquid chromatography-electrospray ionization mass spectrometry method is developed and validated for the identification and quantitation of azithromycin in human plasma. After the addition of the internal standard and 1.0M sodium hydroxide solution, plasma samples are extracted with a methylene chloride-ethyl acetate mixture (20:80, v/v). The organic layer is evaporated under a stream of nitrogen at 40 degrees C. The residue is reconstituted with 200 microL of the mobile phase. The compounds are separated on a prepacked Shimadzu Shim-pack VP-ODS C18 (5 microm, 150 mm x 2.0 mm) column using a mixture of acetonitrile-water (65:35) (0.5% triethylamine, pH was adjusted to 6.2 with acetic acid) as the mobile phase. Detection is performed on a single quadrupole mass spectrometer by selected ion monitoring mode via electrospray ionization source. The method is fully validated and linear calibration curves are obtained in the concentration ranges from 5 to 2000 ng/mL. The intra- and inter-batch relative standard deviations at four different concentration levels are all < 10%. The limit of detection and quantitation are 2 ng/mL and 5 ng/mL, respectively. The proposed method enables the unambiguous identification and quantitation of azithromycin for pharmacokinetic, bioavailability, or bioequivalence studies.  相似文献   

7.
A rapid, sensitive and specific method to quantify bromazepam in human plasma using diazepam as the internal standard (IS) is described. The analyte and the IS were extracted from plasma by liquid-liquid extraction using diethyl ether-hexane (80 : 20, v/v). The extracts were analyzed by high-performance liquid chromatography (HPLC) coupled to electrospray tandem mass spectrometry (MS/MS). Chromatography was performed isocratically on a Genesis C(18) analytical column (100 x 2.1 mm i.d., film thickness 4 microm). The method had a chromatographic run time of 5.0 min and a linear calibration curve over the range 5.0-150 ng ml(-1) (r(2) > 0.9952). The limit of quantification was 5 ng ml(-1). This HPLC/MS/MS procedure was used to assess the bioequivalence of two bromazepam 6 mg tablet formulations (bromazepam from Medley SA Indústria Farmacêutica as the test formulation and Lexotan from Produtos Roche Químico e Farmacêutico SA as the reference formulation). A single 6 mg dose of each formulation was administered to 24 healthy volunteers (12 males and 12 females). The study was conducted using an open, randomized, two-period crossover design with a 3 week washout interval. Since the 90% CI for C(max), AUC(last), AUC(0-240 h) (linear) and AUC((0- infinity )) ratios were all inside the 80-125% interval proposed by the US Food and Drug Administration, it was concluded that the bromazepam formulation from Medley is bioequivalent to the Lexotan formulation for both the rate and the extent of absorption.  相似文献   

8.
A rapid, sensitive and specific high-performance liquid chromatography-electrospray ionization mass spectrometry (LC/ESI-MS) method was developed and validated for the first time to determine the concentration of lafutidine in human plasma. After the addition of diazepam (the internal standard, IS) and 1 M sodium hydroxide solution to 0.5-ml plasma sample, lafutidine was extracted from plasma with n-hexane : isopropanol (95 : 5, v/v). The organic layer was evaporated and the residue was redissolved in 200-microl mobile phase. The analyte was chromatographically separated on a prepacked Shimadzu Shim-pack VP-ODS C(18) column (250 x 2.0 mm i.d.) using a mixture of methanol-water (20 mM CH(3)COONH(4)) = 80 : 20 (v/v) as mobile phase. Detection was performed on a single quadrupole mass spectrometer using an electrospray ionization interface and the selected-ion monitoring (SIM) mode. The method showed excellent linearity (r = 0.9993) over the concentration range of 5-400 ng/ml and had good accuracy and precision. The within- and between-batch precisions were within 10% relative standard deviation. The limit of detection was 1 ng/ml. The validated LC/ESI-MS method has been successfully applied to the bioequivalence study of lafutidine in 24 healthy male Chinese volunteers.  相似文献   

9.
HIV protease inhibitors are important antiretroviral drugs which have substantially reduced the morbidity and mortality associated with HIV-1 infection. Recent data have shown relationships between plasma concentrations of the protease inhibitors and clinical response, which makes therapeutic drug monitoring valuable. We have developed and validated an assay, using liquid chromatography coupled with electrospray tandem mass spectrometry (LC/MS/MS), for the routine quantification of the six licensed protease inhibitors (amprenavir, indinavir, lopinavir, nelfinavir, ritonavir and saquinavir) and the pharmacologically active nelfinavir metabolite M8 in plasma. The sample pretreatment consisted of protein precipitation with a mixture of methanol and acetronitrile using only 100 microl of plasma. Chromatographic separation was performed on an Inertsil ODS3 column (50 x 2.0 mm i.d., particle size 5 microm), with a quick stepwise gradient using an acetate buffer (pH 5) and methanol, at a flow rate of 0.5 ml min(-1). The analytical run time was 5.5 min. The use of a 96-well plate autosampler allowed batch sizes up to 150 patient samples. The triple-quadrupole mass spectrometer was operated in the positive ion mode and multiple reaction monitoring was used for drug quantification. The method was validated over the concentration ranges 0.01-10 microg ml(-1) for indinavir and saquinavir, 0.1-10 microg ml(-1) for amprenavir, 0.05-10 microg ml(-1) for nelfinavir and ritonavir, 0.1-20 microg ml(-1) for lopinavir and 0.01-5 microg ml(-1) for M8. Saquinavir-d(5) and indinavir-d(6) were used as internal standards. The coefficients of variation were always <10% for both intra-day and inter-day precisions for each compound. Mean accuracies were also between the designated limits (+/-15%). The validated concentration ranges proved to be adequate in daily practice. This robust and fast LC/MS/MS assay is now successfully applied for routine therapeutic drug monitoring and pharmacokinetic studies in our hospital.  相似文献   

10.
A fast and sensitive ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method was developed for the determination of lovastatin in human plasma. With simvastatin as internal standard, sample pretreatment involved one-step extraction with n-hexane-methylene dichloride-isopropanol (20:10:1, v/v/v) of 0.5 mL plasma. Chromatographic separation was carried out on an Acquity UPLC BEH C(18) column with mobile phase consisting of acetonitrile-water (containing 5 mmol/L ammonium acetate; 85:15, v/v) at a flow-rate of 0.35 mL/min. The detection was performed on a triple-quadrupole tandem mass spectrometer by multiple reaction monitoring (MRM) via electrospray ionization source with positive mode. The analysis time was shorter than 1.7 min per sample. The standard curve was linear (r2>or=0.99) over the concentration range 0.025-50.0 ng/mL with a lower limit of quantification of 0.025 ng/mL. The intra- and inter-day precision values were below 11% and the accuracy (relative error) was within 6.0% at three quality control levels. This is the first method of MS with MRM coupled to UPLC for the determination of lovastatin, which showed great advantages of high sensitivity, selectivity and high sample throughput. It was fully validated and successfully applied to the pharmacokinetic study of lovastatin tablets in healthy Chinese male volunteers after oral administration.  相似文献   

11.
Fludarabine and cyclophosphamide are anticancer agents mainly used in the treatment of hematologic malignancies. We have developed and validated an assay using high-performance liquid chromatography (HPLC) coupled with electrospray ionization tandem mass spectrometry for the quantification of fludarabine in combination with cyclophosphamide in human heparin and human EDTA plasma. Sample pre-treatment consisted of a protein precipitation with cold acetonitrile (-20 degrees C) using 250 microL of plasma. Separation was performed on an Extend C18 column (150 x 2.1 mm i.d.; 5 microm) with a stepwise gradient using 1 mM ammonia solution and acetonitrile at a flow rate of 400 microL/min. The analytical run time was 12 min. The triple quadrupole mass spectrometer was operated in the positive ion mode and multiple reaction monitoring was used for drug quantification. The method was validated over a concentration range of 1 to 100 ng/mL for fludarabine and cyclophosphamide in human heparin and human EDTA plasma. The coefficients of variation were <13.9% for inter- and intra-day precisions. Mean accuracies were also within the designated limits (+/-15%). The analytes were stable in plasma, processed extracts and in stock solution under all relevant conditions.  相似文献   

12.
A simple, sensitive and rapid high-performance liquid chromatography/electrospray ionization tandem mass spectrometry method was developed and validated for the assay of granisetron in human plasma. Following liquid-liquid extraction, the analytes were separated using an isocratic mobile phase on a reversed-phase C18 column and analyzed by MS in the multiple reaction monitoring mode using the respective [M+H]+ ions, m/z 313/138 for granisetron and m/z 409/228 for the IS. The assay exhibited a linear dynamic range of 0.1-20 ng/mL for granisetron in human plasma. The lower limit of quantification was 100 pg/mL with a relative standard deviation of less than 5%. Acceptable precision and accuracy were obtained for concentrations over the standard curve range. A run time of 2.0 min for each sample made it possible to analyze more than 400 human plasma samples per day. The validated method has been successfully used to analyze human plasma samples for application in pharmacokinetic, bioavailability or bioequivalence studies.  相似文献   

13.
A method based on liquid chromatography with negative ion electrospray ionization and tandem mass spectrometry is described for the determination of nimesulide in human plasma. Liquid-liquid extraction using a mixture of diethyl ether and dichloromethane was employed and celecoxib was used as an internal standard. The chromatographic run time was 4.5 min and the weighted (1/x) calibration curve was linear in the range 10.0-2000 ng x ml(-1). The limit of quantification was 10 ng x ml(-1), the intra-batch precision was 6.3, 2.1 and 2.1% and the intra-batch accuracy was 3.2, 0.3 and 0.1% for 30, 300 and 1200 ng x ml(-1) respectively. The inter-batch precision was 2.3, 2.8 and 2.7% and the accuracy was 3.3, 0.3 and 0.1% for 30, 300 and 1200 ng x ml(-1) respectively. This method was employed in a bioequivalence study of one nimesulide drop formulation (nimesulide 50 mg x ml(-1) drop, Medley S/A Indústria Farmacêutica, Brazil) against one standard nimesulide drop formulation (Nisulid, 50 mg x ml(-1) drop, Astra Médica, Brazil). Twenty-four healthy volunteers (both sexes) took part in the study and received a single oral dose of nimesulide (100 mg, equivalent to 2 ml of either formulation) in an open, randomized, two-period crossover way, with a 2-week washout interval between periods. The 90% confidence interval (CI) for geometric mean ratios between nimesulide and Nisulid were 93.1-109.6% for C(max), 87.7-99.8% for AUC(last) and 88.1-99.7% for AUC(0-infinity). Since the 90% CI for the above-mentioned parameters were included in the 80-125% interval proposed by the US Food and Drug Administration, the two formulations were considered bioequivalent in terms of both rate and extent of absorption.  相似文献   

14.
A simple, sensitive and selective LC-MS-MS method has been developed for the quantification of huperzine A in human plasma. Huperzine A and pseudoephedrine hydrochloride (internal standard) were isolated from human plasma by extraction with ethyl acetate, chromatographed on a C(18) column with a mobile phase consisting of 0.2% formic acid-methanol (15:85, v/v) and detected using a tandem mass spectrometer with an electrospray ionization interface. The lower limit of quantification was 0.0508 ng/mL, and the assay exhibited a linear range of 0.0508-5.08 ng/mL (r = 0.9998). The method was successfully applied to investigate the bioequivalence between two kinds of tablets (test vs reference product) in 18 healthy male Chinese volunteers. After a single 0.2 mg dose for the test and reference product, the resulting means of major pharmacokinetic parameters such as AUC(0-24), AUC(0-infinity), C(max), T(max) and t(1/2) of huperzine A were 16.35 +/- 3.42 vs 16.38 +/- 3.61 ng h/mL, 17.53 +/- 3.80 vs 17.70 +/- 3.97 ng h/mL, 2.47 +/- 0.49 vs 2.51 +/- 0.51 ng/mL, 1.3 +/- 0.4 vs 1.2 +/- 0.3 h and 5.92 +/- 0.75 vs 6.18 +/- 0.66 h, respectively, indicating that these two kinds of tablets were bioequivalent.  相似文献   

15.
Atrasentan (A-147627) is an endothelin antagonist receptor being developed at Abbott Laboratories for the treatment of prostate cancer. A quick and sensitive method for the determination of atrasentan in human plasma has been developed and validated using high-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry. A dual-column, single mass spectrometer system is used to provide a reliable and routine means to increase sample throughput. The analytical method involves liquid-liquid extraction and internal standard (A-166790). The plasma samples and internal standard are acidified with 0.3 M hydrochloric acid prior to being extracted into 1:1 (v/v) hexanes--methyl t-butyl ether. The organic extract was evaporated to dryness using heated nitrogen stream and reconstituted with mobile phase. Atrasentan and internal standard were separated with no interference in a Zorbax SB-C(18) analytical column with 2.1 x 50 mm, 5 microm, and a Zorbax C(8) guard column using a mobile phase consisting of 50:50 (v:v) acetonitrile--0.05 M ammonium acetate, pH 4.5, at a flow rate of 0.30 mL/min to provide 4 min chromatograms. For a 250 microL plasma sample volume, the limit of quantitation was approximately 0.3 ng/mL. The calibration was linear from 0.30 to 98.0 ng/mL (r(2) > 0.995). A significant advantage of the method is the ability to employ parallel HPLC separations with detection by a single MS/MS system to provide sensitivity and selectivity sufficient to achieve robust analytical results with a lower limit of quantitation of 0.30 ng/mL and high throughput.  相似文献   

16.
An assay based on protein precipitation and liquid chromatography/tandem mass spectrometry (LC-MS/MS) has been developed and validated for the quantitative analysis of lisinopril in human plasma. After the addition of enalaprilat as internal standard (IS), plasma samples were prepared by one-step protein precipitation using perchloric acid followed by an isocratic elution with 10 mm ammonium acetate buffer (pH adjusted to 5.0 with acetic acid)-methanol (70:30, v/v) on a Phenomenex Luna 5 mu C(18) (2) column. Detection was performed on a triple-quadrupole mass spectrometer utilizing an electrospray ionization (ESI) interface operating in positive ion and selected reaction monitoring (SRM) mode with the precursor to product ion transitions m/z 406 --> 246 for lisinopril and m/z 349 --> 206 for enalaprilat. Calibration curves of lisinopril in human plasma were linear (r = 0.9973-0.9998) over the concentration range 2-200 ng/mL with acceptable accuracy and precision. The limit of detection and lower limit of quantification in human plasma were 1 and 2 ng/mL, respectively. The validated LC-MS/MS method has been successfully applied to a preliminary pharmacokinetic study of lisinopril in Chinese healthy male volunteers.  相似文献   

17.
A rapid high-performance liquid chromatography/positive ion electrospray tandem mass spectrometry method was developed and validated for the quantification of fexofenadine in human plasma using mosapride as internal standard. Following solid-phase extraction, the analytes were separated using an isocratic mobile phase on a reverse-phase column and analyzed by MS/MS in the multiple reaction monitoring mode using the respective [M+H]+ ions, m/z 502/466 for fexofenadine and m/z 422/198 for the IS. The method exhibited a linear dynamic range of 1-500 ng/mL for fexofenadine in human plasma. The lower limit of quantification was 1 ng/mL with a relative standard deviation of less than 5% for fexofenadine. Acceptable precision and accuracy were obtained for concentrations over the standard curve range. The total chromatographic run time of 2 min for each sample made it possible to analyze more than 400 human plasma samples per day. The validated method has been successfully used to analyze human plasma samples for application in pharmacokinetic, bioavailability or bioequivalence studies.  相似文献   

18.
In the present study, a simple and rapid method for metamizole metabolite 4-methylamino antipyrine (MAA) determination in human plasma was developed, validated and successfully applied to a clinical trial. Chromatographic separation was achieved in HILIC mode on a YMC-Pack SIL column (100 × 2.0 mm; S-5 μm, 30 nm), with a mobile phase consisting of acetonitrile, water and formic acid. Protein precipitation of a small plasma volume using acetonitrile was selected for sample preparation. The multiple reaction monitoring transitions in the positive ionization mode were m/z 218.2 → 56.2 for MAA and m/z 221.2 → 56.2 for MAA-d3 (IS, internal standard). Concentration levels of MAA calibration standards were in the range of 0.100–20 μg/ml. Metamizole conversion into MAA in both water and organic media was investigated, and the level of the conversion in commercially available injection solutions was estimated.  相似文献   

19.
A method for the quantification of clindamycin in animal plasma using high-performance liquid chromatography combined with electrospray ionization mass spectrometry (LC/ESI-MS/MS) is presented. Lincomycin is used as the internal standard. The sample preparation includes a simple deproteinization step with trichloroacetic acid. Chromatographic separation is achieved on an RP-18 Hypersil column using gradient elution with 0.01 M ammonium acetate and acetonitrile as mobile phase. Good linearity was observed in the range 0-10 microg ml(-1). The limit of quantification of the method is 50 ng ml(-1) and the limit of detection is 1.3 ng ml(-1). The method was shown out to be of use for pharmacokinetic studies of clindamycin formulations in dogs.  相似文献   

20.
A specific, sensitive, rapid and reproducible method for the determination of flomoxef in human plasma using high‐performance liquid chromatography–tandem mass spectrometry was developed and validated. Flomoxef was detected using an electrospay ionization method operated in negative‐ion mode. Chromatographic separation was performed in gradient elution mode on a Luna® C18(2) column (3 μm , 20 × 4.0 mm) at a flow rate of 1 mL/min and runtime 3.5 min. The mobile phase consisted of acetonitrile and water containing 0.1% formic acid as additive. Extraction of flomoxef from plasma and precipitation of plasma proteins was performed with acetonitrile with an absolute recovery of 86.4 ± 1.6%. The calibration curve was linear with a correlation coefficient of 0.999 over the concentration range 10–5000 ng/mL and the lower limit of quantification was 10 ng/mL. The intra‐ and inter‐day precisions were <11.8%, while the accuracy ranged from 99.6 to 109.0%. A stability study of flomoxef revealed that it could be successfully analyzed at 4ºС over 24 h, but it was unstable in solutions at room temperature during short‐term storage (4 h) and several freeze–thaw cycles. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号