首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The scandium-bipyridine-catalyzed enantioselective addition of anilines and O-alkyl hydroxylamines to meso-epoxides has been optimized and extended to a broad range of epoxides and amines. Whereas aromatic meso-epoxides generally furnished the corresponding 1,2-amino alcohols in excellent enantioselectivities, aliphatic meso-epoxides only gave rise to moderate enantioselectivities in the aminolysis. The catalyst loading may be lowered to just 5 mol% with only marginal effects on yield and enantioselectivity. A strong positive nonlinear effect has been observed, pointing to aggregation phenomena of the catalyst.  相似文献   

2.
The desymmetrization ring opening of meso epoxides using trimethylsilyl cyanide catalyzed by organogallium and indium complexes with binaphthol monoether derivatives as chiral ligands gave beta-isocyanohydrins with moderate to excellent enantioselectivities of up to 95% ee.  相似文献   

3.
Optically active (1S,3R,4R)-3-[N-(trans-2,5-dialkyl)pyrrolidinyl]methyl-2-azabicyclo-[2.2.1]heptanes were evaluated as catalysts for the enantioselective beta-elimination of meso-epoxides. The (2R,5R)-dimethylpyrrolidinyl-substituted catalyst 4 exhibited exceptionally high enantioselectivity and reactivity, and several substrates were rearranged with enantioselectivities of 98-99% ee. In addition, the use of 4 allowed the first successful, true catalytic rearrangement of the difficult substrates cyclopentene oxide (81%, 96% ee) and (Z)-4-octene oxide (80%, 91% ee).  相似文献   

4.
Catalytic asymmetric ring opening of cyclohexene oxide and meso-stilbene oxide with anilines was catalyzed by a Ti-(S)-(−)-BINOL complex to afford β-amino alcohols in high yield (up to 95%) and good enantioselectivities (ee up to 55%) under microwave irradiation. The reaction using a microwave was found to be 10 times faster than traditional oil-bath heating with retention of enantioselectivity.  相似文献   

5.
We report a method to construct chiral tetraorganosilicons by tandem silacyclobutane (SCB) desymmetrization–dehydrogenative silylations. A wide array of dibenzosiloles with stereogenic quaternary silicon centers were obtained in good yields and enantioselectivities up to 93 % ee . Chiral TMS‐segphos was found to be a superior ligand in terms of reactivity and enantioselectivity.  相似文献   

6.
[reaction: see text] An operationally simple and environmentally benign protocol for the catalytic asymmetric ring opening of meso-epoxides with aromatic amines has been developed. The reactions proceeded smoothly in the presence of 1 mol % of Sc(OSO3C12H25)3 and 1.2 mol % of a chiral bipyridine ligand in water to afford beta-amino alcohols in high yields with excellent enantioselectivities.  相似文献   

7.
The asymmetric allylic alkenylation of Morita-Baylis-Hillman (MBH) carbonates with N-itaconimides as nucleophiles has been developed using a commercially available Cinchona alkaloid catalyst. A variety of multifunctional chiral α-methylene-β-maleimide esters were attained in moderate to excellent yields (up to 99%) and good to excellent enantioselectivities (up to 91% ee). The origin of the regio- and stereoselectivity was verified by DFT methods. Calculated geometries and relative energies of various transition states strongly support the observed regio- and enantioselectivity.  相似文献   

8.
Several alpha-substituted N-carbethoxytropinones have been evaluated as catalysts for asymmetric epoxidation of alkenes with Oxone, via a dioxirane intermediate. alpha-Fluoro-N-carbethoxytropinone (2) has been studied in detail and is an efficient catalyst which does not suffer from Baeyer-Villiger decomposition and can be used in relatively low loadings. This ketone was prepared in enantiomerically pure form using chiral base desymmetrization of N-carbethoxytropinone. Asymmetric epoxidation catalyzed by 2 affords epoxides with up to 83% ee. Among other derivatives tested, the alpha-acetoxy derivative 7 affords the highest enantioselectivities.  相似文献   

9.
The asymmetric ring opening of meso epoxides with TMSCN is catalyzed by (pybox)YbCl3 complexes, yielding the beta-trimethylsilyloxy nitrile ring-opened products with good enantioselectivities (83-92% ee). The reaction exhibits a second-order kinetic dependence on catalyst concentration and a first-order dependence on epoxide concentration, consistent with a bimetallic pathway involving simultaneous activation of epoxide and cyanide.  相似文献   

10.
Halide or alkoxide free yttrium-salen complexes are excellent catalysts for the ring opening of epoxides mediated by TMSCN and TMSN3. Substrate to catalyst ratios up to 10000 have been realized in these potentially useful reactions, which can be run under solvent-free conditions. Even though the enantioselectivities for the TMSCN-mediated reaction remains modest (best 77% ee), these studies with a highly tunable ligand system may provide further impetus for work in this important area of catalysis. Even though attempts to isolate a Y-cyanide complex, which was detected by in situ IR spectroscopy, failed, a related dimeric hydroxide complex was isolated. A kinetic study using in situ IR spectroscopy did not provide conclusive data to assign an order with respect to Y in this reaction.  相似文献   

11.
Chiral diarylmethylamines (DAMA) are important structural motifs widely present in pharmaceuticals, natural products, and chiral ligands. Herein, we reported a highly enantioselective synthesis of chiral DAMAs via cobalt-catalyzed enantioselective C−H alkoxylation strategy. The reaction features easy operation, the use of earth-abundant and cost-efficient cobalt(II) catalyst, and readily available ligand. A range of chiral DAMAs were efficiently synthesized in high yields with excellent enantioselectivities (up to 90 % yield and up to 99 % ee) through desymmetrization and parallel kinetic resolution. Moreover, this protocol was also compatible with the synthesis of chiral benzylamines via kinetic resolution.  相似文献   

12.
The development of enantioselective anti-selective Mannich-type reactions of aldehydes and ketones with imines catalyzed by 3-pyrrolidinecarboxylic acid and related pyrrolidine derivatives is reported in detail. Both (3R,5R)-5-methyl-3-pyrrolidinecarboxylic acid and (R)-3-pyrrolidinecarboxylic acid efficiently catalyzed the reactions of aldehydes with alpha-imino esters under mild conditions and afforded anti-Mannich products with high diastereo- and enantioselectivities (anti/syn up to 99:1, up to >99% ee). For the reactions of ketones with alpha-imino esters, (R)-3-pyrrolidinecarboxylic acid was an efficient catalyst (anti/syn up to >99:1, up to 99% ee). Evaluation of a series of pyrrolidine-based catalysts indicated that the acid group at the beta-position of the pyrrolidine ring of the catalyst played an important role in forwarding the carbon-carbon bond formation and in directing anti-selectivity and enantioselectivity.  相似文献   

13.
The complex of AgF and (R)-DIFLUORPHOS has been shown to be an effective catalyst for the asymmetric Sakurai-Hosomi allylation of simple ketones. A significaant improvement of the reactivity was observed by using THF as the solvent. The catalyst turnover was increased by addition of 1 equiv of MeOH. AgF and (R)-DIFLUORPHOS predominantly formed a 1:1 complex that provided high enantioselectivity. This catalyst system can be applied to various simple ketones, and corresponding tertiary homoallylic alcohols were obtained with excellent enantioselectivities (up to 96% ee). Only 1,2-adducts were obtained from both acyclic and cyclic conjugate ketones. The regio-, diastereo-, and enantioselective crotylation has also been achieved. E- or Z-crotyltrimethoxysilane gave a similar diastereomer ratio with high enantioselectivities. This finding introduces the utility of racemic allylsilanes for the enantioselective Sakurai-Hosomi allylation reaction.  相似文献   

14.
A new dinuclear chiral Co(salen) complexes bearing group 13 metals have been synthesized and characterized. The easily prepared complexes exhibited very high catalytic reactivity and enantioselectivity for the asymmetric ring opening of epoxides with H2O, chloride ions and carboxylic acids and consequently provide enantiomerically enriched terminal epoxides (>99% ee). It also catalyzes the asymmetric cyclization of ring opened product, to prepare optically pure terminal epoxides in one step. The homogeneous dinuclear chiral Co(salen) have been covalently immobilized on MCM-41. The potential benefits of heterogenization include facilitation of catalyst separation and recyclability requiring very simple techniques. The system described is very efficient.  相似文献   

15.
A series of chiral macrocyclic Cr(III) salen complexes 1-8 were synthesized and characterized. These complexes were found to be highly active, regio-, diastereo-, and enantioselective catalysts in aminolytic kinetic resolution (AKR) of racemic trans-epoxides as well as asymmetric ring opening (ARO) of prochiral meso-epoxides with various anilines as nucleophiles at room temperature in 18-24 h. Excellent yields (>99% with respect to the nucleophile) with high enantioselectivity (ee, >99%) of chiral anti-β-amino alcohols was achieved with concomitant recovery of corresponding epoxides in high ee (up to >99%). The complex 1 also catalyzed the ARO of meso-epoxides to provide corresponding syn-β-amino alcohols in high yield (99%) and ee (up to 91%). Due to built-in basic sites in the catalyst, no external base (as an additive) was required to promote AKR and ARO reactions. The catalyst 1 was conveniently recycled several times with retention of its performance. The AKR of trans-stilbene oxide with aniline was successfully demonstrated at relatively higher scale (10 mmol) using the catalyst 1.  相似文献   

16.
A chiral phosphoric acid (5)-catalyzed three-component Povarov reaction of aldehydes 2, anilines 3, and enecarbamates 4 afforded cis-4-amino-2-aryl(alkyl)-1,2,3,4-tetrahydroquinolines 1 in high yields with excellent diastereoselectivities (>95%) and almost complete enantioselectivities (up to >99% ee). The reaction was applicable to a wide range of anilines bearing electron-donating (OMe) and electron-withdrawing groups (e.g., Cl, CF(3), NO(2)) and allowed, for the first time, aliphatic aldehydes to be employed in the enantioselective Povarov reaction. With β-substituted acyclic enecarbamates, 2,3,4-trisubstituted 1,2,3,4-tetrahydroquinolines with three contiguous stereogenic centers were produced in excellent diastereo- and enantioselectivities (87 to >99% ee). A detailed study of the active catalytic species allowed us to reduce the catalyst loading from 10% to 0.5% with no deterioration of enantiomeric excess. In addition, mechanistic studies allowed us to conclude unequivocally that the Povarov reaction involving enecarbamate as dienophile proceeded via a stepwise mechanism. The key role of the free NH function of the enecarbamate in the success of this transformation was demonstrated. NMR experiments indicating the catalyst-substrate interaction as well as a linear correlation between catalyst and product ee's were also documented.  相似文献   

17.
The design of new chiral ligands plays a very important role in the development of transition metal catalyzed asymmetric synthesis. Many chiral diphosphine ligands have been prepared and applied in asymmetric catalytic reactions with excellent enantioselectivities. Among the chiral diphosphine ligands reported, BINAP was found to have been the widest application in the transition metal catalyzed reaction. Recently we have developed a novel oxovanadium (Ⅳ) complex catalyst for the oxidative …  相似文献   

18.
Direct asymmetric α-amination of unmodified aldehydes with azodicarboxylates in ionic liquids in the presence of imidazolium ion-tagged l-proline organocatalyst 1 gives excellent enantioselectivities (up to 98% ee) and high chemical yields. The system can be easily recycled and reused for at least four times without significant loss of yields and enantioselectivity.  相似文献   

19.
Catalyzed by Rhodococcus erythropolis AJ270, an amidase-containing microbial whole cell catalyst in neutral phosphate buffer at 30 °C, a number of prochiral α-substituted α-aminomalonamides underwent highly efficient and enantioselective hydrolytic desymmetrization to afford functionalized α-tetrasubstituted α-amino acids in 74-98% chemical yields and 94.0 to >99.5% ee. The presence of a free α-amino (NH(2)) substituent in the substrates was deemed important to ensure high biocatalytic efficiency and enantioselectivity. The synthetic application of biocatalytic desymmetrization was demonstrated by practical chemical transformations of (R)-2-amino-2-carbamoylpent-4-enoic acid to α-substituted serine analogues and a bioactive diamino alcohol derivative.  相似文献   

20.
A new and efficient chiral catalyst system, lanthanum-chiral BINOL-tris(4-fluorophenyl)phosphine oxide-cumene hydroperoxide, was developed for the epoxidation of alpha, beta-unsaturated ketones thus providing the corresponding epoxy ketones with excellent enantioselectivities (up to >99% ee) in good to excellent yields at room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号