首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到1条相似文献,搜索用时 0 毫秒
1.
A micromechanics constitutive theory which takes into account both the dilatation and shear effects of the transformation is proposed to describe the macroscopic plastic behavior of structure ceramics during forward transformation under different temperatures. Under some basic assumptions, the analytic expressions of the Helmholtz and complementary free energy of the constitutive element are derived in a self-consistent manner by using the Mori-Tanaka's method which takes into account the interaction between the transformed inclusions. In the framework of Hill-Rice's internal variable constitutive theory, the forward transformation yield function and incremental stress strain relations, in analogy to the theory of metal plasticity, for non-proportional loading histories are obtained. The project supported by National Natural Science Foundation of China  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号