首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Envelope modulations have been shown important in determining the effectiveness of masking noises. For example, the threshold for detecting a signal flanked by maskers is lower if the maskers and the signal are modulated with different envelopes, rather than the same envelope (comodulation). This threshold change is called the comodulation detection difference (CDD). CDDs were studied in two wild-caught hooded crows, using a 1.5 kHz signal and two maskers at 0.9 and 2.1 kHz, presented at an overall level of 55 dB SPL (re 20 microPa). For direct comparison with human psychophysics, three human subjects were tested in the same setup. CDDs averaged 15 dB for the two crow subjects and 11 dB for the human subjects. The species difference between average CDDs was insignificant. The significance of the CDD effect in a natural setting is discussed.  相似文献   

2.
Auditory brainstem response (ABR) and standard behavioral methods were compared by measuring in-air audiograms for an adult female harbor seal (Phoca vitulina). Behavioral audiograms were obtained using two techniques: the method of constant stimuli and the staircase method. Sensitivity was tested from 0.250 to 30 kHz. The seal showed good sensitivity from 6 to 12 kHz [best sensitivity 8.1 dB (re 20 microPa2 x s) RMS at 8 kHz]. The staircase method yielded thresholds that were lower by 10 dB on average than the method of constant stimuli. ABRs were recorded at 2, 4, 8, 16, and 22 kHz and showed a similar best range (8-16 kHz). ABR thresholds averaged 5.7 dB higher than behavioral thresholds at 2, 4, and 8 kHz. ABRs were at least 7 dB lower at 16 kHz, and approximately 3 dB higher at 22 kHz. The better sensitivity of ABRs at higher frequencies could have reflected differences in the seal's behavior during ABR testing and/or bandwidth characteristics of test stimuli. These results agree with comparisons of ABR and behavioral methods performed in other recent studies and indicate that ABR methods represent a good alternative for estimating hearing range and sensitivity in pinnipeds, particularly when time is a critical factor and animals are untrained.  相似文献   

3.
The audiograms of three Japanese macaques and seven humans were determined in a free-field environment using loudspeakers. The monkeys and humans were tested using tones ranging from 8 Hz to 40 kHz and 4 Hz to 22.4 kHz, respectively. At a level of 60 dB sound pressure level the monkeys were able to hear tones extending from 28 Hz to 37 kHz with their best sensitivity of 1 dB occurring at 4 kHz. The human 60-dB hearing range extended from 31 Hz to 17.6 kHz with a best sensitivity of -10 dB at 2 and 4 kHz. These results indicate that the Japanese macaque has low-frequency hearing equal to that of humans and better than that indicated by previous audiograms obtained using headphones.  相似文献   

4.
The tradeoff relation between exposure intensity and duration for constant hearing loss was investigated in two series of experiments using Mongolian gerbils. The gerbils were exposed to a 1/3 octave band of noise at 2.5 kHz. In the first series animals were exposed to 120 dB SPL for 1 h, to 126 dB SPL for 15 min, and to 126 dB SPL for 3.75 min. In the second series, shorter durations were used: 120 dB SPL for 15 min, 126 dB SPL for 3.75 min, and 126 dB SPL for 56 s. The hearing thresholds were determined behaviorally immediately before exposure and 6 weeks after exposure. The results suggest that the intensity-time tradeoff for the investigated intensity interval is between 1.5 and 3 dB per halving of the duration.  相似文献   

5.
Dolphin auditory thresholds obtained via evoked potential audiometry may deviate from behavioral estimates by 20 dB or more. Differences in the sound source, stimulus presentation method, wave form, and duration may partially explain these discrepancies. To determine the agreement between behavioral and auditory evoked potential (AEP) threshold estimates when these parameters are held constant, behavioral and AEP hearing tests were simultaneously conducted in a bottlenose dolphin. Measurements were made in-air, using sinusoidal amplitude-modulated tones continuously projected via a transducer coupled to the pan region of the dolphin's lower jaw. Tone trials were presented using the method of constant stimuli. Behavioral thresholds were estimated using a 50% correct detection. AEP thresholds were based on the envelope following response and 50% correct detection. Differences between AEP and behavioral thresholds were within +/-5 dB, except at 10 kHz (12 dB), 20 kHz (8 dB), 30 kHz (7 dB), and 150 kHz (24 dB). In general, behavioral thresholds were slightly lower, though this trend was not significant. The results demonstrate that when the test environment, sound source, stimulus wave form, duration, presentation method, and analysis are consistent, the magnitude of the differences between AEP and behavioral thresholds is substantially reduced.  相似文献   

6.
Lateralization and frequency selectivity in normal and impaired hearing   总被引:1,自引:0,他引:1  
The onset-time difference delta T required to lateralize a 30-ms bifrequency tone burst toward the leading ear was measured as a function of the frequency difference delta F between the tone in the left ear and the tone in the right ear. At center frequencies of 0.5 and 4 kHz, four normal listeners tested at 80 and 100 dB SPL had delta Ts that were relatively constant at subcritical delta Fs, but increased at delta Fs wider than a critical band. At 1 kHz, delta T increased with delta F even at subcritical delta Fs. Ten listeners with cochlear impairments were tested at 100 dB SPL. Seven had normal delta Ts at 4 kHz, despite hearing losses between 50 and 70 dB. At 0.5 and 1 kHz, mildly impaired listeners had nearly normal lateralization functions, whereas more severely imparied listeners had very large delta Ts and no frequency selectivity. These and other findings indicate that listeners even with moderate to severe hearing losses can lateralize normally on the basis of interaural differences in onset envelope, but not on the basis of temporal differences in the fine structure.  相似文献   

7.
The underwater hearing sensitivity of a two-year-old harbor porpoise was measured in a pool using standard psycho-acoustic techniques. The go/no-go response paradigm and up-down staircase psychometric method were used. Auditory sensitivity was measured by using narrow-band frequency-modulated signals having center frequencies between 250 Hz and 180 kHz. The resulting audiogram was U-shaped with the range of best hearing (defined as 10 dB within maximum sensitivity) from 16 to 140 kHz, with a reduced sensitivity around 64 kHz. Maximum sensitivity (about 33 dB re 1 microPa) occurred between 100 and 140 kHz. This maximum sensitivity range corresponds with the peak frequency of echolocation pulses produced by harbor porpoises (120-130 kHz). Sensitivity falls about 10 dB per octave below 16 kHz and falls off sharply above 140 kHz (260 dB per octave). Compared to a previous audiogram of this species (Andersen, 1970), the present audiogram shows less sensitive hearing between 2 and 8 kHz and more sensitive hearing between 16 and 180 kHz. This harbor porpoise has the highest upper-frequency limit of all odontocetes investigated. The time it took for the porpoise to move its head 22 cm after the signal onset (movement time) was also measured. It increased from about 1 s at 10 dB above threshold, to about 1.5 s at threshold.  相似文献   

8.
In the course of measuring the real-ear attenuation at threshold (REAT) of experimenter-inserted E-A-R foam earplugs on 100 subjects, a statistically significant correlation was observed between attenuation and hearing level (for normal listeners, HTL less than or equal to 20 dB) at test frequencies from 2-8 kHz. Listeners with more sensitive hearing obtained better protection. The relationship was most robust at 6 and 8 kHz. For hearing levels greater than 20 dB, attenuation appeared independent of hearing level. A hypothesis was developed to explain the relationship for the normal listeners, based upon the fact that the high-frequency attenuation of the earplug was nearly bone-conduction limited. The hypothesis suggested that the attenuation of a hearing protector that provided substantially lower protection would not exhibit the same relationship. Data for such a device were collected for 70 subjects, and indeed demonstrated reduced correlation between attenuation and hearing level. Implications of the results of the experiments are discussed with regard to hearing level requirements for hearing protector attenuation test subjects, utilization of hearing-impaired listeners to measure REAT at suprathreshold (with respect to normal listeners) sound pressure levels, and linearity of hearing protector attenuation as a function of sound level.  相似文献   

9.
Caged fish were exposed to sound from mid-frequency active (MFA) transducers in a 5 × 5 planar array which simulated MFA sounds at received sound pressure levels of 210 dB SPL(re 1 μPa). The exposure sound consisted of a 2 s frequency sweep from 2.8 to 3.8 kHz followed by a 1 s tone at 3.3 kHz. The sound sequence was repeated every 25 s for five repetitions resulting in a cumulative sound exposure level (SEL(cum)) of 220 dB re 1 μPa(2) s. The cumulative exposure level did not affect the hearing sensitivity of rainbow trout, a species whose hearing range is lower than the frequencies in the presented MFA sound. In contrast, one cohort of channel catfish showed a statistically significant temporary threshold shift of 4-6 dB at 2300 Hz, but not at lower tested frequencies, whereas a second cohort showed no change. It is likely that this threshold shift resulted from the frequency spectrum of the MFA sound overlapping with the upper end of the hearing frequency range of the channel catfish. The observed threshold shifts in channel catfish recovered within 24 h. There was no mortality associated with the MFA sound exposure used in this test.  相似文献   

10.
Sound conditioning (pre-exposure to a moderate-level acoustic stimulus) can induce resistance to hearing loss from a subsequent traumatic exposure. Most sound conditioning experiments have utilized long-duration tones and noise at levels below 110 dB SPL as traumatic stimuli. It is important to know if sound conditioning can also provide protection from brief, high-level stimuli such as impulses produced by gunfire, and whether there are differences between females and males in the response of the ear to noise. In the present study, chinchillas were exposed to 95 dB SPL octave band noise centered at 0.5 kHz for 6 h/day for 5 days. After 5 days of recovery, they were exposed to simulated M16 rifle fire at a level of 150 dB peak SPL. Animals that were sound conditioned showed less hearing loss and smaller hair cell lesions than controls. Females showed significantly less hearing loss than males at low frequencies, but more hearing loss at 16 kHz. Cochleograms showed slightly less hair cell loss in females than in males. The results show that significant protection from impulse noise can be achieved with a 5-day conditioning regimen, and that there are consistent differences between female and male chinchillas in the response of the cochlea to impulse noise.  相似文献   

11.
Overshoot was measured in both ears of four subjects with normal hearing and in five subjects with permanent, sensorineural hearing loss (two with a unilateral loss). The masker was a 400-ms broadband noise presented at a spectrum level of 20, 30, or 40 dB SPL. The signal was a 10-ms sinusoid presented 1 or 195 ms after the onset of the masker. Signal frequency was 1.0 or 4.0 kHz, which placed the signal in a region of normal (1.0 kHz) or impaired (4.0 kHz) absolute sensitivity for the impaired ears. For the normal-hearing subjects, the effects of signal frequency and masker level were similar to those published previously. In particular, overshoot was larger at 4.0 than at 1.0 kHz, and overshoot at 4.0 kHz tended to decrease with increasing masker level. At 4.0 kHz, overshoot values were significantly larger in the normal ears: Maximum values ranged from about 7-26 dB in the normal ears, but were always less than 5 dB in the impaired ears. The smaller overshoot values resulted from the fact that thresholds in the short-delay condition were considerably better in the hearing-impaired subjects than in the normal-hearing subjects. At 1.0 kHz, overshoot values for the two groups of subjects more or less overlapped. The results suggest that permanent, sensorineural hearing loss disrupts the mechanisms responsible for a large overshoot effect.  相似文献   

12.
Masked tonal thresholds were measured for a beluga whale at one noise level and 32 frequencies between 40 Hz and 115 kHz. Critical ratios were estimated and compared with those previously measured for the bottlenose dolphin. Beluga whale critical ratios were found to be about 3 dB lower than those of the bottlenose dolphin. Absolute tonal thresholds were extended below previous measurements to 40 Hz.  相似文献   

13.
The underwater hearing sensitivity of a striped dolphin was measured in a pool using standard psycho-acoustic techniques. The go/no-go response paradigm and up-down staircase psychometric method were used. Auditory sensitivity was measured by using 12 narrow-band frequency-modulated signals having center frequencies between 0.5 and 160 kHz. The 50% detection threshold was determined for each frequency. The resulting audiogram for this animal was U-shaped, with hearing capabilities from 0.5 to 160 kHz (8 1/3 oct). Maximum sensitivity (42 dB re 1 microPa) occurred at 64 kHz. The range of most sensitive hearing (defined as the frequency range with sensitivities within 10 dB of maximum sensitivity) was from 29 to 123 kHz (approximately 2 oct). The animal's hearing became less sensitive below 32 kHz and above 120 kHz. Sensitivity decreased by about 8 dB per octave below 1 kHz and fell sharply at a rate of about 390 dB per octave above 140 kHz.  相似文献   

14.
The hearing thresholds of two adult manatees were measured using a forced-choice two alternative paradigm and an up/down staircase psychometric method. This is the first behavioral audiogram measured for any Sirenian, as well as the first underwater infrasonic psychometric test with a marine mammal. Auditory thresholds were obtained from 0.4 to 46 kHz, and detection thresholds of possible vibrotactile origin were measured at 0.015-0.2 kHz. The U-shaped audiogram demonstrates an upper limit of functional hearing at 46 kHz with peak frequency sensitivity at 16 and 18 kHz (50 dB re: 1 microPa). The range of best hearing is 6-20 kHz (approximately 9 dB down from maximum sensitivity). Sensitivity falls 20 dB per octave below 0.8 kHz and approximately 40 dB per octave above 26 kHz. The audiogram demonstrates a wider range of hearing and greater sensitivity than was suggested from evoked potential and anatomical studies. High frequency sensitivity may be an adaptation to shallow water, where the propagation of low frequency sound is limited by physical boundary effects. Hearing abilities of manatees and other marine mammals may have also been shaped by ambient and thermal noise curves in the sea. Inadequate hearing sensitivity at low frequencies may be a contributing factor to the manatees' inability to effectively detect boat noise and avoid collisions with boats.  相似文献   

15.
Echolocation clicks from Norwegian killer whales feeding on herring schools were recorded using a four-hydrophone array. The clicks had broadband bimodal frequency spectra with low and high frequency peaks at 24 and 108 kHz, respectively. The -10 dB bandwidth was 35 kHz. The average source level varied from 173 to 202 dB re 1 microPa (peak-to-peak) at 1 m. This is considerably lower than source levels described for Canadian killer whales foraging on salmon. It is suggested that biosonar clicks of Norwegian killer whales are adapted for localization of prey with high target strength and acute hearing abilities.  相似文献   

16.
The purpose of the present study was to determine the effect of primary-tone level variation, L2--L1, on the amplitude of distortion-product otoacoustic emissions (DPOAEs). The DPOAE at the frequency 2f1--f2 (f2 greater than f1) was measured in 20 ears of ten normally hearing subjects. Acoustic distortion products were generated by primaries f1 and f2 with geometric mean frequencies of 1, 2, and 4 kHz. The f2/f1 ratios were 1.25 (1 kHz), 1.23 (2 kHz), and 1.21 (4 kHz). The primary-tone level L1 was kept constant at either 65 or 75 dB SPL while the second primary-tone level L2 was varied between 20 and 90 dB SPL in 5-dB steps. The level differences L2--L1 generating maximal DPOAE amplitudes depended on L1 and on the geometric mean frequency of f1 and f2. There were large interindividual differences. Overall, the L2--L1 evoking maximal mean DPOAE amplitudes was --10 dB for geometric mean frequencies of 1 and 2 kHz with both L1 = 65 dB SPL and L1 = 75 dB SPL. For 4 kHz, L2-L1 was --5 dB with L1 = 65 dB SPL and 0 dB with L1 = 75 dB SPL. The mean slopes of the DPOAE growth functions in the initial linearly increasing portions were steeper at higher stimulus frequencies, increasing from 0.52 at 1 kHz to 0.72 at 4 kHz for L1 = 65 dB SPL and from 0.48 at 1 kHz to 0.72 at 4 kHz for L1 = 75 dB SPL.  相似文献   

17.
The real-ear attenuation data for 81 different hearing protectors were analyzed with respect to the errors that would arise if, instead of averaging the 1/3-octave-band results at 3.15 and 4 kHz and 6.3 and 8 kHz, respectively, the octave-band attenuation at 4 and 8 kHz was estimated from only the 1/3-octave-band data at those two frequencies. Errors as large as 3-4 dB were found to occur in rare instances, but more typically were in the range of 0.5-1.5 dB. However, in terms of computation of an overall noise reduction rating such as the NRR, the effect of excluding the 3.15- and 6.3-kHz data led to errors that averaged only 0.1 dB and never exceeded 0.3 dB, except in one instance, where the error was 0.6 dB. It was concluded that there is little value in measuring real-ear attenuation in a diffuse sound field at the frequencies of 3.15 and 6.3 kHz for applications in which hearing protector attenuation data are normally utilized.  相似文献   

18.
Groups of human subjects were exposed in a diffuse sound field for 16--24 h to an octave-band noise centered at 4, 2, 1, or 0.5 kHz. Sound-pressure levels were varied on different exposure occasions. At specified times during an exposure, the subject was removed from the noise, auditory sensitivity was measured, and the subject was returned to the noise. Temporary threshold shifts (TTS) increased for about 8 h and then reached a plateau or asymptote. The relation between TTS and exposure duration can be described by a simple exponential function with a time constant of 2.1 h. In the frequency region of greatest loss, threshold shifts at asymptote increased about 1.7 dB for every 1 dB increase in the level of the noise above a critical level. Critical levels were empirically estimated to be 74.0 dB SPL at 4 kHz. 78 dB at 2 kHz, and 82 dB at 1 and 0.5 kHz. Except for the noise centered at 4.0 kHz, threshold shifts were maximal about 1/2 octave above the center frequency of the noise. A smaller second maximum was observed also at 7.0 kHz for the noise centered at 2.0 kHz, at 6.0 kHz for the noise centered at 1.0 kHz, and at 5.5 kHz for the noise centered at 0.5 kHz. After termination of the exposure, recovery to within 5 dB of pre-exposure thresholds was achieved within 24 h or less. Recovery can be described by a simple exponential function with a time constant of 7.1 h. The frequency contour defined by critical levels matches almost exactly the frequency contour defined by the E-weighting network.  相似文献   

19.
A behavioral response paradigm was used to measure masked underwater hearing thresholds in five bottlenose dolphins and two white whales before and immediately after exposure to intense 1-s tones at 0.4, 3, 10, 20, and 75 kHz. The resulting levels of fatiguing stimuli necessary to induce 6 dB or larger masked temporary threshold shifts (MTTSs) were generally between 192 and 201 dB re: 1 microPa. The exceptions occurred at 75 kHz, where one dolphin exhibited an MTTS after exposure at 182 dB re: 1 microPa and the other dolphin did not show any shift after exposure to maximum levels of 193 dB re: 1 microPa, and at 0.4 kHz, where no subjects exhibited shifts at levels up to 193 dB re: 1 microPa. The shifts occurred most often at frequencies above the fatiguing stimulus. Dolphins began to exhibit altered behavior at levels of 178-193 dB re: 1 microPa and above; white whales displayed altered behavior at 180-196 dB re: 1 microPa and above. At the conclusion of the study all thresholds were at baseline values. These data confirm that cetaceans are susceptible to temporary threshold shifts (TTS) and that small levels of TTS may be fully recovered.  相似文献   

20.
Maturation of the traveling-wave delay in the human cochlea   总被引:1,自引:0,他引:1  
The maturation of the traveling-wave delay in the human cochlea was investigated in 227 subjects ranging in age from 29 weeks conceptional age to 49 years by using frequency specific auditory brain-stem responses (ABRs). The derived response technique was applied to ABRs obtained with click stimuli (presented at a fixed level equal to 60-dB sensation level in normal hearing adults) in the presence of high-pass noise masking (slope 96 dB/oct) to obtain frequency specific responses from octave-wide bands. The estimate of traveling-wave delay was obtained by taking the difference between wave I latencies from adjacent derived bands. It was found that the traveling-wave delay between the octave band with center frequency (CF) of 11.3 kHz and that with CF of 5.7 kHz decreased (about 0.4 ms on average) in exponential fashion with age to reach adult values at 3-6 months of age. This decrease was in agreement with reported data in kitten auditory-nerve fibers. The traveling-wave delays between adjacent octave bands with successive lower CF did not change with age.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号