首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

Membranes based on cellulose acetate used in ultrafiltration applications lack good, chemical, mechanical and thermal resistance. In order to prepare membranes with improved properties, modification of cellulose acetate with epoxy resin through solution blending was attempted. In the present work, the membrane casting solutions with different polymer blend compositions of cellulose acetate and diglycidyl ether of bisphenol-A (DGEBA) were prepared at 30±2°C. The maximum percent compatibility of the two polymers, cellulose acetate and diglycidyl ether of bisphenol-A, was estimated to be 60/40%. Ultrafiltration blend membranes based on various blend compositions were prepared, characterized in terms of compaction, pure water flux, water content, membrane hydraulic resistance and molecular weight cut-off. The application of these membranes, in rejection of proteins of various molecular weights, are discussed.  相似文献   

2.
Viscoelastic properties of cellulose microfibril—polymer composites and paper sheets were studied with dynamic mechanical analysis as a function of relative humidity in order to assess the bonding properties in cellulosic networks. The amount of associated water in the composites (equilibrium moisture content) was measured by thermogravimetry. Water plasticization was evidenced by DMA both in composite and paper samples. Polymers with high affinity to water, e.g. carboxymethyl cellulose, clearly increased the water plasticization in the composites. The plasticization behavior of paper sheet samples was also influenced by polymers. However, the effect of polymers on the plasticization was different between the composite and the paper samples. The consideration of fiber bonding domain in paper structure as a gel-like layer consisting of cellulose microfibrils, polymers, and associated water can help to unveil some of the complex mechanisms behind the strength in fibrous cellulosic materials.  相似文献   

3.
Asymmetric membranes of cellulose acetate and cellulose acetate modified with pendant amino groups have been evaluated for ultrafiltration and dialysis properties. Ultrafiltration rates from 4 to 30 times that of Cuprophan were obtained. During the ultrafiltration test, up to 89% of inulin in the test solution permeated with the ultrafitrate in contrast to the 14% permeation of inulin through a Cuprophan membrane. In spite of the apparently facile permeation of high molecular weight species (e.g., inulin) through the experimental membranes, human albumin was quantitatively reflected. Dialysis tests indicate that cellulose acetate membranes 38 μ or less in thickness should surpass 23-μ-thick (wet) Cuprophan in purely diffusional transport of blood solutes of low molecular weight.

In addition to their promising ultrafiltration and dialysis properties, membranes made from a blend of cellulose acetate and N,N-diethylaminoethylcellulose acetate were found to sorb heparin strongly. The clotting time of rabbit blood in contact with the heparinized membranes was extended, in some cases indefinitely.  相似文献   

4.
Hydrophilic polysulfone ultrafiltration (UF) membranes were prepared from blends of cellulose acetate with carboxylated polysulfone of 0.14 degree of carboxylation. The effects of blend polymer composition on compaction, pure water flux, water content and membrane hydraulic resistance (Rm), have been investigated to evaluate the performance of the membranes. The performance of the blend membranes of various blend polymer compositions were compared with that of membranes prepared from pure cellulose acetate and blends of cellulose acetate and pure polysulfone. The hydrophilic cellulose acetate-carboxylated polysulfone blend UF membranes showed better performance compared to membranes prepared from pure cellulose acetate and blends of cellulose acetate and pure polysulfone.  相似文献   

5.
New ultrafiltration membranes based on chemically and thermally stable arylene main-chain polymers have been prepared by blending the sulfonated poly(ether ether ketone) with cellulose acetate in various compositions in N,N-dimethylformamide as solvent by phase inversion technique. Prepared membranes have been subjected to ultrafiltration characterizations such as compaction, pure water flux, water content, and membrane hydraulic resistance. The pore statistics and molecular weight cut-off (MWCO) of the membranes have been estimated using proteins such as trypsin, pepsin, egg albumin and bovine serum albumin. The pore size increased with increasing concentrations of sulfonated poly(ether ether ketone) in the casting solution. Similarly, the MWCOs of the membranes ranged from 20 to 69 kDa, depending on the various polymer compositions. Surface and cross-sectional morphologies of membranes were analyzed using scanning electron microscopy. The effects of polymer compositions on the above parameters were analyzed and the results are compared and discussed with those of pure cellulose acetate membranes.  相似文献   

6.
The dependence of water absorption of 2 to 4 μm thick membranes of cellulose acetate on relative humidity was determined by measuring small changes in their asymmetric waveguide properties in the visible spectral region. Simultaneous measurements of changes in film thickness provide a direct method for obtaining the change in film volume as a function of water concentration and a new measure of polymer porosity. Data are presented for a typical film fabricated from cellulose acetate (CA398-30) which illustrate the usefulness of studying water absorption by integrated optics techniques.  相似文献   

7.
This present work focused on preparation of economic and high performance reverse osmosis membranes, characterized by high transport properties (salt rejection and flux) towards desalination of brackish water. In this respect cellulose acetate from sugar-cane bagasse (BCA) and polymethyl methacrylate (PMMA) wastes were used as the substrates of membrane. The function of PMMA for enhancing the performance of bagasse-based cellulose acetate RO-membranes was investigated at operating pressure 35.85 bar and feed temperature 25 °C. The effects of casting solution, percentage of polymer and treatment of polymer by alkali (HPMMA) on the performance of RO-membrane were discussed. The preferable composition (wt.%) of the 90% BCA and 10% HPMMA was achieved salt rejection 92.18% and flux 325.9 l h−1 m−2. High water purity was obtained by pre-passing the salted water through membrane made from dissolved bagasse (methylol cellulose) together with PMMA, instead of ion exchanger, followed by passing the accepted water through BCA–HPMMA membrane, whereas the salt rejection increased to 98%. Also, by this approach we obtained high thermal stability membrane compared to CA-RO-membrane. This data gives highlight on possibility of application such type of membrane with high temperature operation conditions.  相似文献   

8.
We propose a self-consistent molecular theory of conformational properties of flexible polymers in solution. It is applied to the collapse of a hydrophobic polymer chain in water, and can be readily generalized to any polymer-solvent system (e.g., copolymers with high complexity). We stress the potential of this method for a variety of problems, such as protein folding.  相似文献   

9.
This study is concerned with modifying cellulose acetate (CA)/polyethylene glycol (PEG) membranes prepared via phase inversion technique in the presence of carbon nanoparticles; candle soot (CS) resulting from combusted candle. CS nanoparticles were analyzed via Fourier transform infrared spectroscopy and transmission electron microscopy. The developed membranes were characterized for their surface morphology, mechanical properties as well as thermal stability. CS nanoparticles contributed in improving the salt rejection % with a slight reduction in the water flux behavior. Employing the annealed cellulose acetate/polyethylene glycol membranes loaded with candle soot nanoparticles provides an adequate approach towards water desalination implementations.  相似文献   

10.
The phenomenon of spontaneous changes in the linear dimensions (elongation-contraction) is described for commercial and laboratory samples of acetate yarns processed by wet spinning from high- molecular -mass cellulose diacetate in vapors of a mesophas ogenic solvent (which is able to form a lyotropic LC phase with the polymer), nitromethane, and its mixtures with water. The thermodeformational, elastic- plastic, physicomechanical, and surface characteristics of the yarns at different stages of their spontaneous deformation are analyzed. When samples are treated with probe vapors, orientational processes in the polymer matrix are activated, and this observation makes it possible to prepare yarns with improved physicomechanical characteristics and with low linear density. A new phenomenon (to our knowledge) of cyclic three- stage deformation of acetate monofilaments in nitromethane vapors is discovered. This evidence is interpreted from the standpoint of phase (amorphous glassy-liquid crystalline state) and conformational transitions as well as by the mechanism of interaction between polymers and solvent vapors and related development of the LC phase.  相似文献   

11.
The adsorption of several toluene-soluble polymers at the toluene–water interface has been investigated by using the duNouy ring method of measuring interfacial tension γT /W . Polystyrene and poly(ethylene-co-vinyl acetate) (11.1 mole-% vinyl acetate) have little affinity for this interface at 29°C, but poly(methyl methacrylate) (PMMA) (M?n = 420,000) and ethyl cellulose (EC) (M?n = 50,100; 49.1% ethoxyl) adsorb significantly at concentrations as low as 1.0 × 10?4 g/100ml. A plot of interfacial tension lowering versus initial logarithm of initial bulk phase polymer concentration is linear from 1.0 × 10?4 to 1.0 × 10?1 g/100 ml for EC and 1.0 × 10?4 to 1.0 × 10?2 g/100 ml for PMMA. When the PMMA concentration increases to 1.15 × 10?1 g/100 ml, its adsorption behavior changes markedly. Prolonged time effects occur and adsorption becomes dependent upon dissolved water content of the toluene prior to formation of the toluene/water interface. Such effects are not observed with the other solutions studied. Increasing temperatures have variable effects on values of γT /W for the polymer solutions studied. Experiments with various polymer mixtures indicate that the polymer lowering T /W the most is preferentially adsorbed at the toluene–water interface and rapidly displaces less strongly adsorbed polymers.  相似文献   

12.
Cellulose acetate is one of the most important esters of cellulose. Depending on the way it has been processed cellulose acetate can be used for great varies of applications (e.g. for films, membranes or fibers). The properties of the applied cellulose acetates are very important for these applications. A special field for using cellulose acetate is the synthesis of porous, spherical particles, so called cellulose beads. Different types of technical cellulose acetates were used and their ability to form such cellulose beads was characterized. First the different types of cellulose acetates were characterized by means of solubility; turbidity and degree of substitution. In addition the molar mass and the distribution of substituents along the polymeric chain were analyzed. Next, the cellulose beads were synthesized within an emulsion process using these different cellulose acetates. Then the properties (particle size, porosity, morphology) of the cellulose beads were determined. Finally, the relationship between the characteristic of cellulose acetates and properties of cellulose beads was investigated.  相似文献   

13.
The adsorption behavior of hydroxylpropyl cellulose (HPC), ethyl hydroxylethyl cellulose (EHEC) and poly-vinylalcohol (PVA) polymers, which have a lower critical solution temperature (LCST), have been studied in comparison with the behavior of hydroxylethyl cellulose (HEC) with no LCST. The saturated amount of adsorption (A s ) for the polymers with LCST depended significantly on the adsorption temperature and theA s , e. g., for HPC obtained at the LCST, the amount was 1.5 times as large as the value at room temperature. The highA s values obtained at the LCST were maintained over a long period at room temperature, and the dense adsorption layer formed on the latex particles at the LCST showed a strong protective action against flocculation. Furthermore, the effect of the surface nature of the adsorbent on the polymer adsorption at the LCST has been investigated using six kinds of synthetic latices with different surface natures. It was found that the hydrophobic interaction between the polymer and the adsorbent plays an important role in inducing the adsorption, and the trend of increasing the hydrophilic character of the latex surface prevents the formation of the adsorption layer of the polymer.  相似文献   

14.
The effects of nonionic surfactants having different hydrophilicity and membranes having different hydrophobicity and molecular weight cut-off on the performance of micellar-enhanced ultrafiltration (MEUF) process were examined. A homologous series of polyethyleneglycol (PEG) alkylether having different numbers of methylene groups and ethylene oxide groups was used for nonionic surfactants. Polysulfone membranes and cellulose acetate membranes having different molecular cut-off were used for hydrophobic membranes and hydrophilic membranes, respectively. The concentration of surfactant added to pure water was fixed at the value of 100 times of critical micelle concentration (CMC). The flux through polysulfone membranes decreased remarkably due to adsorption mainly caused by hydrophobic interactions between surfactant and membrane material. The decline of solution flux for cellulose acetate membranes was not as serious as that for polysulfone membranes because of hydrophilic properties of cellulose acetate membranes. The surfactant rejections for the cellulose acetate membranes increased with decreasing membrane pore size and with increasing the hydrophobicity of surfactant. On the other hand the surfactant rejections for polysulfone membranes showed totally different rejection trends with those for cellulose acetate membranes. The surfactant rejections for the polysulfone membranes depend on the strength of hydrophobic interactions between surfactant and membrane material and molecular weight of surfactants.  相似文献   

15.
In this article, the radiation grafting of acrylamide on to cellulose acetate flat membranes using UV-irradiation on the initiator is described. The modified membranes thus obtained have been characterized by IR, DSC, and TGA. Their transport properties have been studied. The modified membranes exhibit higher salt rejection with slightly reduced water flux as compared with cellulose acetate membrane. The work is further extended to study the thermal stability of these modified membranes in a dry state. These modified membranes up to 330°C are stable.  相似文献   

16.
Cellulose triacetate (CTA) ultrafilters and cellulose acetate blend (CAB) desalination membranes were treated with a radiofrequency gas plasma (tetrafluoromethane (CF(4)) or carbon dioxide (CO(2)), 47-49 W, 0.04-0.08 mbar). Treatment times were varied between 15 s and 120 min. The plasma-treated top layer of the membranes was characterized by scanning electron microscopy, X-ray photoelectron spectroscopy, and contact angle measurements to obtain information about surface structure, chemistry, and wettability, respectively. The membrane properties (e.g., permeability, selectivity, fouling) were studied by waterflux measurements, molecular weight cutoff measurements, and fouling experiments with bovine serum albumin. CO(2) plasma treatment resulted in gradual etching of the membrane's dense top layer. Permeation and selectivity changed significantly for treatment times of 0-15 min for CTA and 5-60 min for CAB membranes. Moreover, CTA membranes were hydrophilized during CO(2) plasma treatment whereas CF(4) plasma treatment led to hydrophobic surfaces due to strong fluorination of the top layer. This study shows that gas plasma etching can tailor the properties of asymmetric cellulose acetate membranes by simultaneously modifying the chemistry and structure of the top layer. The low fouling properties of CTA membranes were thereby largely maintained.  相似文献   

17.
The solubility and the diffusivity for water and NaCl in a fully aromatic polyamide (PA) film have been determined. From these the “intrinsic permeability characteristics” of this polymer have been calculated and its suitability for desalination by reverse osmosis is compared with that of the commonly used cellulose acetate (CA). It has been found that, although the solubility of NaCl in the PA film is higher than that in a CA film, PA membranes will reject salt better than CA membranes having identical structure and morphology. This is because the diffusivity of NaCl through the PA film is substantially lower, and the permeability of water through it (as well as the solubility and the diffusivity of water in it) are higher than the comparable values for CA films.  相似文献   

18.
Binary blends of thermoplastic polymers, one being a polyolefin (high density polyethylene) and the other a bio-based polymer (cellulose acetate butyrate) were prepared with various components proportions. No compatibiliser was used. Depending on blend composition, different morphologies were obtained, from fine nodular to co-continuous. Blends viscoelastic and mechanical properties were studied in details in all range of compositions. The results obtained were interpreted using a careful analysis of the viscoelastic properties of the initial components and classical approaches developed for immiscible blends. Except the blends containing low amount of cellulose acetate butyrate finely dispersed in polyethylene, all other blends viscoelastic and mechanical properties follow the additive mixing rule.  相似文献   

19.
Hayashita T  Takagi M 《Talanta》1985,32(5):399-405
Various metal thiocyanate complexes in aqueous solution were sorbed on solid cellulose acetate polymers. The sorption selectivity increased in the order Zn(2+) > Fe(3+) > Cu(2+) > Co(2+) > Ni(2+). The sorption behaviour followed a Langmuir-type adsorption isotherm, and the maximum adsorption capacity was 6.1 x 10(-5) mole of complex per g of polymer under optimum conditions. The zinc species sorbed appear to be NH(4)Zn(H(2)O)(SCN)(3) or (NH(4))(2)Zn(SCN)(4) according to analysis of the sorption equilibrium. The ion-association species formed by the complex zinc anion and the ammonium ion was supposed to be sorbed (or "extracted") onto the polymer matrix. As an application of sorption of metal complexes, a new hyperfiltration process was proposed for selective separation of metal ions. Thus, a mixture of metal thiocyanate complexes was hyperfiltered through cellulose acetate membranes. Permeation of certain metal complexes was preferred, and the selectivity was found to be similar to the sorption selectivity. These findings lead to a generalized idea that hyperfiltration separation of ionic species, particularly anionic metal complexes, can be attained by using polymer membranes which selectively adsorb or extract such ionic species as ion-association complexes onto the polymer matrix.  相似文献   

20.
Nanofiber membranes have huge potential applications in many areas due to their unique properties. However, the thermoplastic micro/nanofiber membranes were rarely reported. In this paper, polypropylene (PP) nanofibers were prepared by melt extrusion of immiscible blends of PP, cellulose acetate butyrate (CAB), and subsequent removal of the CAB matrix. The wet‐laid application was used to make PP nanofiber membranes and PP‐g‐MAH/nonwoven micro/nanofiber membrane. The properties of membranes including morphology, apparent density, porosity, contact‐angle, pore size distribution, and water flux were characterized. The results showed that the consequent membranes were provided with optimistic porosity and pore size distribution. Moreover, they were all with high pure water fluxes, which were superior to that of PP microporous membrane. They performed an excellent separation performance of TiO2 suspension and dyeing wastewater. The work revealed this method could be an efficient one to make thermoplastic polymer micro/nanofiber membranes, and they would have a brilliant potential application for water treatment. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号