首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interaction in two mixtures of a nonionic surfactant Triton-X-100 (TX-100) and different ionic surfactants was investigated. The two mixtures were TX-100/sodium dodecyl sulfate (SDS) and TX-100/cetyltrimethylammonium bromide (CTAB) at molar fraction of TX-100, αTX-100 = 0.6. The surface properties of the surfactants, critical micelle concentration (CMC), effectiveness of surface tension reduction (γCMC), maximum surface excess concentration (Γmax), and minimum area per molecule at the air/solution interface (A min) were determined for both individual surfactants and their mixtures. The significant deviations from ideal behavior (attractive interactions) of the nonionic/ionic surfactant mixtures were also determined. Mixtures of both TX-100/SDS and TX-100/CTAB exhibited synergism in surface tension reduction efficiency and mixed micelle formation, but neither exhibited synergism in surface tension reduction effectiveness.  相似文献   

2.
In the present study, we have investigated the self-association, mixed micellization, and thermodynamic studies of a cationic gemini (dimeric) surfactant, hexanediyl-1,6-bis(dimethylcetylammonium bromide (16-6-16)) and a cationic conventional (monomeric) surfactant, cetyltrimethylammonium bromide (CTAB). The critical micelle concentration (CMC) of pure (16-6-16 and CTAB) and mixed (16-6-16+CTAB) surfactants was measured by electrical conductivity, dye solubilization, and surface tension measurements. The surface properties (viz., C20 (the surfactant concentration required to reduce the surface tension by 20 mN/m), ΠCMC (the surface pressure at the CMC), Γmax (maximum surface excess concentration at the air/water interface), Amin (the minimum area per surfactant molecule at the air/water interface), etc.) of micellar (16-6-16 or CTAB) and mixed micellar (16-6-16+CTAB) surfactant systems were evaluated. The thermodynamic parameters of the micellar (16-6-16 and CTAB) and mixed micellar (16-6-16+CTAB) surfactant systems were also evaluated.  相似文献   

3.
The effects of sodium barbital (SB) on the solubility of different kinds of surfactants viz., CTAB (cationic head group), SDS (anionic head group) and Triton X‐100 (non ionic head group) in solution phase as well as their first and second critical micelle concentrations (CMC1 and CMC2), the change in Kraft temperatures (TK) and cloud points (CP) have been studied. Furthermore, the article reports SB‐surfactant interaction study, which is application oriented and highlights the underlying physico‐chemical aspects of the system through florescence and conductivity measurements. The results show that the solubility of CTAB and Triton X‐100 increases with the addition of SB, and that of SDS increases in the presence of small amounts of SB and decreases in the presence of large amounts of SB. With the increasing SB concentration, the CMC of CTAB and CMC1 of Triton X‐100 both increase, while the CMC of SDS decreases, and the CMC2 of Triton X‐100 has no obvious change. The addition of SB decreases the TK of CTAB sharply, but it increases the TK of SDS and the CP of Triton X‐100. The different effects of SB on the physico‐chemical properties of differently charged surfactants may be related to its different interactions with the surfactants.  相似文献   

4.
The adsorption isotherms of Triton X-100 for air/water–orthophosphoric acid interfaces were determined by the stripping method. The surface chemical parameters, Γmax, F and ΔG°A, and the aggregation ones, CMC and the ΔGM, are determined in different H2O/H3PO4 mixtures. For concentrations higher than 4 M, the values of the CMC, ΔGM, Γmax and ΔG°A increase with increasing acid concentrations due to the occurring changes in the medium structure. ©2000 Académie des sciences / Éditions scientifiques et médicales Elsevier SASsurface tension / non-ionic surfactant / micellization / orthophosphoric acid  相似文献   

5.
The kinetics of vitamin C by ferric chloride hexahydrate has been investigated in the aqueous ethanol solution of basic surfactant viz. octadecylamine (ODA) under pseudo-first order conditions. The critical micelle concentration (CMC) of surfactant was determined by surface tension measurement. The effect of pH (2.5–4.5) and temperature (15–35°C) in the presence and absence of surfactant were investigated. Activation parameters, ΔE a, ΔH #, ΔS #, ΔG , for the reaction were calculated by using Arrhenius and Eyring plot. Surface excess concentration (Γmax), minimum area per surfactant molecule (A min), average area occupied by each molecule of surfactant (a), surface pressure at the CMC (Πmax), Gibb’s energy of micellization (ΔG M°), Gibb’s energy of adsorption (ΔG ad°), were calculated. It was found that the reaction in the presence of surfactant showed faster oxidation rate than the aqueous ethanol solution. Reaction mechanism has been deduced in the presence and absence of surfactant.  相似文献   

6.
Adsorption of surfactin, a powerful lipopeptide biosurfactant, at the air-liquid interface has been investigated in this article. The adsorption took place from buffered solutions containing relatively high concentrations of surfactin co- and counterions. Dynamic surface tension measurements were used to follow the self-assembly of surfactin at the interface until equilibrium surface pressure Π e is reached at a given surfactin concentration (C s). Gibbs adsorption equation in conjunction with the Langmuir adsorption isotherm was used to predict surfactin surface excess as a function of the biosurfactant concentration up to the critical micelle concentration (CMC). The predicted surface excess at saturation (Γ ) is 1.05?±?0.05 μmol m?2, corresponding to an area per molecule (A ) of 159?±?8 Å2. The adsorption equilibrium constant (K?=?(1.5?±?0.6)?×?106 M‐?1) was also estimated from the nonlinear regression of Π e???C s data in region B of the Π e???ln?C s plot. The value of K suggests that surfactin has strong affinity for the interface, which is in line with its known high surface activity. Gibbs elasticity (E G) of the interfacial surfactin monolayers, which is an important thermodynamic property, was also predicted at different surfactin concentrations. The limiting value (at the CMC) of E G was found to be 183 mN m?1, which is comparable to those reported in the literature for similar systems. The findings reported in this work reveal that the surface tension measurements coupled with appropriate theoretical analysis could provide useful information comparable to those obtained using highly sophisticated techniques.  相似文献   

7.
The rationally designed substrate mimic of cycloartenol, 24-thiacycloartanol (24-TC) 4A, and its corresponding sulfonium salt 5A were tested against the recombinant sterol methyltransferase (SMT) from Glycine max (soybean). Analog 4A was found to irreversibly inactivate the enzyme generating competitive- and time-dependent inhibition of activity accompanied by a Ki value of 2 μM and kinact of 0.3 min−1. Analog 5A, a presumptive high-energy intermediate of the SMT catalyzed reaction, was found to be a reversible, non-competitive-type inhibitor generating a Ki value of 55 nM.  相似文献   

8.
The effect of bovine serum albumin on the surface properties of IL-type gemini surfactant ([C10-4-C10im]Br2), have been investigated by surface tension method. The critical micelle concentration (CMC) as a function of BSA concentrations at various temperatures was investigated. The CMC of [C10-4-C10im]Br2 increases with increasing the concentration of BSA as well as the temperature of the system. The interfacial parameters viz; maximum surface excess concentration (Γmax), the minimum area per molecule (Amin), and surface pressure at CMC (Πcmc) were calculated. In addition, thermodynamic parameters of adsorption and micellization were evaluated by using surface tension data. The results indicated that the binding of [C10-4-C10im]Br2 to BSA is spontaneous and exothermic in nature. The process is entropy driven and hydrophobic interactions are the major driving forces.  相似文献   

9.
The mechanisms governing the solubilizing interactions between zwitterionic/anionic mixed surfactant systems at different molar fractions of the zwitterionic surfactant (X zwitter) and unilamellar liposomes were investigated. Solubilization was detected as a decrease in static lightscattering of liposome suspensions. Three parameters were regarded as corresponding to the effective surfactant/lipid molar ratios (Re) at which the surfactant system a) saturated the liposomesRe sat; b) resulted in 50% solubilization of liposomesRe 50%, and c) led to a complete solubilization of these structuresRe sol. These parameters corresponded to theRe at which light scattering stars to decrease, reaches 50% of the original value and shows no further decrease. From these parameters the surfactant partition coefficients for these three steps (K sat,K 50% andK sol) were also determined. The mixed systems were formed byN-tetradecyl-N, N-dimethylbetaine (C14-Bet) and sodium dodecyl sulphate (SDS) in PIPES buffer at pH 7.20. Liposomes were formed by egg phosphatidylcholine and phosphatidic acid (9:1 molar ratio). When the range ofX zwitter was about 0.4–0.6Re andK parameters showed a maximum, whereas the critical micelle concentration (CMC) of these systems exhibited a minimum. Given that the ability of the surfactant systems to solubilize liposomes is inversely related toRe sol, this capacity appeared to be directly correlated with the CMC of the systems. The progressive rise ofK during the process indicates that an increasing surfactant partition equilibrium governs the interaction process from the saturation until the solubilization of vesicles, the free surfactant concentration remaining almost constant with similar values to the CMC for each mixed system studied.  相似文献   

10.
Four strong polyelectrolyte samples of 2-(acrylamido)-2-methylpropanesulfonic acid (AMPS) and N,N-dimethylacrylamide (DMAA) were radically copolymerized with a single label of naphthalene or pyrene, with both labels and without label, containing about 40 mol % AMPS. Fluorescence nonradiative energy transfer (NRET) IPy/INp, anisotropy r, I1/I3 and excimer emission IE/IM of pyrene labels were observed in dilute aqueous solutions with and without cationic surfactant of cetyltrimethylammonium bromide (CTAB). The overlap concentration was determined as 3 g/L from the appearance of intermolecular excimer. The variation of intra- and intermolecular NRET with total polyelectrolyte concentration showed that the charged chains preferentially interpenetrated each other rather than reduce their coil volume as their concentration beyond the overlap threshold. By binding with CTAB, the polyelectrolyte chain became more coiled as known from the reduced viscosity. The intramolecular NRET was dominant when [CTAB]Д᎒-5 M and then the intermolecular NRET occurred at higher CTAB concentrations with hydrophobic aggregation between CTAB tails bound on different polyelectrolyte chains. The CTAB concentration corresponding to the maxima of IPy/INp just is equal to the AMPS monomer concentration, indicating the formation of 1:1 binding between surfactant and polyelectrolyte in very dilute solutions. Added salt of NaCl up to 0.1 M hardly affected the intramolecular NRET but affected the IPy/INp value for the intermolecular NRET.  相似文献   

11.
12.
The solubilization of four chalcones, between aqueous and micellar phases of ionic surfactants (SDS and CTAB), was investigated by conductivity and cyclic voltammetry (CV) techniques. From conductivity data, a decrease in the critical micellar concentration (CMC) of the surfactants, in presence of the chalcones was ascribed to the decreased charge density over the surfactants. The results were seconded by thermodynamic parameters including degree of ionization (α), counter ion binding (β), and standard Gibbs free energy of micellization (ΔG m ). The added surfactant decreased the peak current of the oxidized chalcone and shifted the peak potential either positively (in presence of SDS) or negatively (in presence of CTAB). The effect is rationalized as chalcone-surfactant interaction and quantitated as binding constant (K b) assorting values from 8.78 to 552.97 M?1. The preferred solubilization of the chalcones in the micellar phase has been inferred.  相似文献   

13.
The effects of Tris-HCl buffer solution on the cmc of cetyltrimethylammonium bromide (CTAB) were studied by surface tension measurement. The result shows that the effect of the buffer solution depends on the interaction between CTAB and NaCl and the structure accelerants of water, Tris. A series of parameters, including the critical micelle concentration (cmc), the surface tension at cmc (γcmc), the adsorption efficiency (pC20), and the effectiveness of surface tension reduction (∏cmc) were obtained from the surface tension measurements in the presence of glycine with different concentration in the Tris-HCl buffer solution at 27°C. In addition, maximum surface excess concentration (Γ max) and minimum surface area per molecule (Amin) at the air-water interface were estimated according to the Gibbs adsorption isotherm. The thermodynamic parameters (Δ C p,m , Δ H m,tr , Δ C p,m,tr ) of micellization for CTAB in the absence and presence of glycine at different temperature were also been obtained.  相似文献   

14.
The lithium, potassium, and ammonium salts of bis (2‐ethylhexyl) sulphosuccinic acid have been prepared from the sodium salt (AOT) by applying ion‐exchange technique. The critical micellization concentrations (cmc) of the surfactants with four different counterions have been determined at a temperature range of 10°C to 40°C using surface tension as well as electrical conductivity measurements. Observed data have been utilized to evaluate the ionization degree (counter ion association constant),α, and various thermodynamic parameters of micellization viz, free energy, enthalpy, entropy changes of micelle formation, and also the surface parameters (Γmax, Amin) in aqueous media. The value of cmc decreases with hydrated ionic size of the counter ions (except K+) and follows the order NH4 +>Na+>Li+>K+. While large negative free energy change (ΔG0 m) and the positive entropy change (ΔS0 m) favor the micellization process thermodynamically, nature of their variation with counterion supports the involvement of counterion size factor in micellization process via a change in the hydrophilicity of surfactant head group.  相似文献   

15.
The interaction of Procaine hydrochloride (PC) with cationic, anionic and non-ionic surfactants; cetyltrimethylammonium bromide (CTAB), sodium dodecyl sulfate (SDS) and triton X-100, were investigated. The effect of ionic and non-ionic micelles on solubilization of Procaine in aqueous micellar solution of SDS, CTAB and triton X-100 were studied at pH 6.8 and 29°C using absorption spectrophotometry. By using pseudo-phase model, the partition coefficient between the bulk water and micelles, Kx, was calculated. The results showed that the micelles of CTAB enhanced the solubility of Procaine higher than SDS micelles (Kx = 96 and 166 for SDS and CTAB micelles, respectively) but triton X-100 did not enhanced the solubility of drug because of weak interaction with Procaine. From the resulting binding constant for Procaine-ionic surfactants interactions (Kb = 175 and 128 for SDS and CTAB surfactants, respectively), it was concluded that both electrostatic and hydrophobic interactions affect the interaction of surfactants with cationic procaine. Electrostatic interactions have a great role in the binding and consequently distribution of Procaine in micelle/water phases. These interactions for anionic surfactant (SDS) are higher than for cationic surfactant (CTAB). Gibbs free energy of binding and distribution of procaine between the bulk water and studied surfactant micelles were calculated.   相似文献   

16.
The binding of mixed surfactants of cationic cetyltrimethylammonium bromide (CTAB) and nonionic octaethylene glycol monododecyl ether (C 12E 8) on anionic polyelectrolyte poly[2-acrylamido-2-methylpropanesulfonic acid (PAMPS)] and fluorophore-labeled copolymers containing about 40 mol% of AMPS was investigated at different mole fractions, Y , of CTAB in the surfactant mixture. The excimer emission of the cationic probe 1-pyrenemethylamine hydrochloride (PyMeA·HCl), nonradiative energy transfer (NRET) between pyrene and naphthalene labels and I 1/ I 3 of the pyrene label were determined by varying the total surfactant concentration, c Surf. The I E/ I M value of PyMeA·HCl firstly increases and then decreases to 0 with c Surf, showing a maximum on every curve. The critical aggregation concentration of the mixed surfactants determined from the I E/ I M maximum decreased from 5×10 -5 to 1×10 -5 mol/l as Y increased from 0.1 to 0.50, and then leveled off as Y increased up to unity. And at least 5×10 -6 mol/l CTAB was required for the mixed surfactants to bind on the PAMPS cooperatively. Equimolar binding of CTAB on AMPS was formed at I E/ I M=0 when Y =0.25, while at Y =0.1 some CTAB molecules in the mixed micelle were directed to the water phase without binding with AMPS. Both the intramolecular and the intermolecular NRET increased and then decreased with c Surf, having a maximum on each curve corresponding to the equimolar binding of CTAB and AMPS so long as Y >0, indicating the coiling of the chain and interchain aggregation upon bound surfactants. The I Py/ I Np value at the maximum decreased with decreasing Y because more nonionic surfactant C 12E 8 participated into the polyelectrolyte-mixed surfactant complexes together with bound CTAB.  相似文献   

17.
We determine the association constants for ligand–protein complex formation using the flow injection method. We carry out the measurements at high flow rates (F = 1 mL min−1) of a carrier phase. Therefore, determination of the association constant takes only a few minutes. Injection of 1 nM of the ligand (10 μL of 1 μM concentration of the ligand solution) is sufficient for a single measurement. This method is tested and verified for a number of complexes of selected drugs (cefaclor, etodolac, sulindac) with albumin (BSA). We obtain K = 4.45 × 103 M−1 for cefaclor, K = 1.00 × 105 M−1 for etodolac and K = 1.03 × 105 M−1 for sulindac in agreement with the literature data. We also determine the association constants of 20 newly synthesized 3β- and 3α-aminotropane derivatives with potential antipsychotic activity – ligands of 5-HT1A, 5-HT2A and D2 receptors with the albumin. Results of the studies reported here indicate that potential antipsychotic drugs bind weakly to the transporter protein (BSA) with ≈ 102–103 M−1. Our method allows measuring K in a wide range of values (102–109 M−1). This range depends only on the solubility of the ligand and sensitivity of the detector.  相似文献   

18.
Complex formation of poly(ethylene oxide) (PEO) with divalent barium and strontium salts was investigated in methanol. In these systems the complexation was accompanied by a considerable degree of ionic association. An analytical model for the polymer-ion complexation based on a one-dimensional lattice model was proposed. According to this model, the electrostatic effects between the bound ions were separated from the total free energy change of the binding. Three binding constants, i.e., the ionic association constant K A, the cation binding constant, K c, and the anion binding constant, K a, could be estimated. K A for barium and strontium salts was comparable, and the effect of counteranions on K A was not large. K c for barium salts was almost independent of the kind of counteranion and larger than that for corresponding strontium salts, indicating stronger polymer-ion interaction for barium salts. The anion binding constant, K a, was strongly dependent upon the kind of anion, and the order was CI? ? ? 4 ?. The pronounced ion binding for larger anions may be explained by the more favorable free energy change of desolvation. Finally, the concentration of free and bound ionic species was determined as a function of PEO concentration.  相似文献   

19.
A poly(N-vinylimidazole) (PNVI)—based poly(carboxybetaine) with two methylene groups between the opposite charges was achieved by the nucleophilic addition reaction of the mentioned aminic polymer to the carbon-carbon double bond of acrylic acid (AA). Treatment of poly(carboxybetaine) with concentrated HCl (2 N) for long time leads to the corresponding cationic polyelectrolyte. The poly(carboxybetaine) is soluble in both water and aqueous solutions of salts such as: LiCl, NaCl, NaHCO3, CaCl2, Na2SO4. In water and in the first three salts, poly(carboxybetaine) exhibits a non-polyelectrolyte behaviour (a linear dependence of reduced viscosities on polymer or salt concentration), while in the remaining two salts, a slight polyelectrolyte behaviour is observed. The cationic polyelectrolyte is soluble in water and aqueous solutions of LiCl, NaCl, CaCl2 and NaHCO3, except Na2SO4. It has a polyelectrolyte behaviour in all solutions. Also, the binding trends of the added salts by polymers are discussed.  相似文献   

20.
The partition coefficients, P, in the n-octanol/water system and the acidity constants, Ka, of 15 chlorinated phenols and guaiacols at 20° were simultaneously determined by investigating the pH dependence of the apparent partition coefficients, Pa. For determining Pa, the relative responses of individual phenols and guaiacols in the aqueous phase after equilibration were measured by glass-capillary gas chromatography with electron-capture detection and compared with those in the octanol phase before partition. Curvefitting, linear regression, and non-linear regression were used for treating the partition data. The values of pKa and log P were compared with the values which could be found in the literature, and are discussed in relation to their affinity to methanol/water and acetonitrile/water mixtures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号