首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A systematic study of formation of surface patterns in block copolymer thin layers after their exposure to solvent vapors was performed. The studied effect involves layers of thickness approximately equal to the ordering size of polymers - about 45 nm. Experiments were performed on three styrene - methacrylate derivative block copolymers, synthesized by living anionic polymerization: poly(4-octylstyrene)-block-poly(butyl methacrylate), poly(4-fluorostyrene)-block-poly(butyl methacrylate) and poly(p-octylstyrene)-block-poly(methyl methacrylate). The polymers were exposed to vapors of chloroform, 1,4-dioxane, hexane, acetone and tetrahydrofuran.  相似文献   

2.
Amphiphilic triblock copolymers of poly(methyl methacrylate)-b-poly(ethylene oxide)-b-poly(methyl methacrylate) (PMMA-b-PEO-b-PMMA) with well-defined structure were synthesized via atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) initiated by the PEO macroinitiator. The macroinitiator and triblock copolymer with different PMMA and/or PEO block lengths were characterized with 1H and 13C NMR and gel permeation chromatography (GPC). The micelle formed by these triblock copolymers in aqueous solutions was detected by fluorescence excitation and emission spectra of pyrene probe. The critical micelle concentration (CMC) ranged from 0.0019 to 0.016 mg/mL and increased with increasing PMMA block length, while the PEO block length had less effect on the CMC. The partition constant Kv for pyrene in the micelle and in aqueous solution was about 105. The triblock copolymer appeared to form the micelles with hydrophobic PMMA core and hydrophilic PEO loop chain corona. The hydrodynamic radius Rh,app of the micelle measured with dynamic light scattering (DLS) ranged from 17.3 to 24.0 nm and increased with increasing PEO block length to form thicker corona. The spherical shape of the micelle of the triblock copolymers was observed with an atomic force microscope (AFM). Increasing hydrophobic PMMA block length effectively promoted the micelle formation in aqueous solutions, but the micelles were stable even only with short PMMA blocks.  相似文献   

3.
Block polymerization of 1,1-diethylsilacyclobutane with styrene derivatives and methacrylate derivatives was investigated. Sequential addition of styrene to a living poly(1,1-diethylsilabutane), which was prepared from phenyllithium and 1,1-diethylsilacyclobutane in THF–hexane at −48°C, gave poly(1,1-diethylsilabutane)-b-polystyrene. Similarly, addition of 4-(tert-butyldimethylsiloxy)styrene to the living poly(1,1-diethylsilabutane) provided poly(1,1-diethylsilabutane)-b-poly(4-(tert-butyldimethylsiloxy)styrene). Poly(1,1-diethylsilabutane)-b-poly(methyl methacrylate) was obtained by treatment of living poly(1,1-diethylsilabutane) with 1,1-diphenylethylene followed by an addition of methyl methacrylate. Poly(1,1-diethylsilabutane)-b-poly(2-(tert-butyldimethylsiloxy)ethyl methacrylate) was also synthesized by adding 2-(tert-butyldimethylsiloxy)ethyl methacrylate to the living poly(1,1-diethylsilabutane) which was end-capped with 1,1-diphenylethylene in the presence of lithium chloride. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 2699–2706, 1998  相似文献   

4.
Atom transfer radical polymerization (ATRP) and ring opening polymerization (ROP) were combined to synthesize various polymers with various structures and composition. Poly(ε-caprolactone)-b-poly(n-octadecyl methacrylate), PCL-PODMA, was prepared using both sequential and simultaneous polymerization methods. Kinetic studies on the simultaneous process were performed to adjust the rate of both polymerizations. The influence of tin(II) 2-ethylhexanoate on ATRP was investigated, which led to development of new initiation methods for ATRP, i.e., activators (re)generated by electron transfer (AGET and ARGET). Additionally, block copolymers with two crystalizable blocks, poly(ε-caprolactone)-b-poly(n-butyl acrylate)-b-poly(n-octadecyl methacrylate), PCL-PBA-PODMA, block copolymers for potential surfactant applications poly(ε-caprolactone)-b-poly(n-octadecyl methacrylate-co-dimethylaminoethyl methacrylate), PCL-P(ODMA-co-DMAEMA), and a macromolecular brush, poly(hydroxyethyl methacrylate)-graft-poly(ε-caprolactone), PHEMA-graft-PCL, were prepared using combination of ATRP and ROP.  相似文献   

5.
ABA‐type amphiphilic tri‐block copolymers were successfully synthesized from poly(ethylene oxide) derivatives through anionic polymerization. When poly(styrene) anions were reacted with telechelic bromine‐terminated poly(ethylene oxide) ( 1 ) in 2:1 mole ratio, poly(styrene)‐b‐poly(ethylene oxide)‐b‐poly(styrene) tri‐block copolymers were formed. Similarly, stable telechelic carbanion‐terminated poly(ethylene oxide), prepared from 1,1‐diphenylethylene‐terminated poly (ethylene oxide) ( 2 ) and sec‐BuLi, was also used to polymerize styrene and methyl methacrylate separately, as a result, poly (styrene)‐b‐poly(ethylene oxide)‐b‐poly(styrene) and poly (methyl methacrylate)‐b‐poly(ethylene oxide)‐b‐poly(methyl methacrylate) tri‐block copolymers were formed respectively. All these tri‐block copolymers and poly(ethylene oxide) derivatives, 1 and 2 , were characterized by spectroscopic, calorimetric, and chromatographic techniques. Theoretical molecular weights of the tri‐block copolymers were found to be similar to the experimental molecular weights, and narrow polydispersity index was observed for all the tri‐block copolymers. Differential scanning calorimetric studies confirmed the presence of glass transition temperatures of poly(ethylene oxide), poly(styrene), and poly(methyl methacrylate) blocks in the tri‐block copolymers. Poly(styrene)‐b‐poly(ethylene oxide)‐b‐poly(styrene) tri‐block copolymers, prepared from polystyryl anion and 1 , were successfully used to prepare micelles, and according to the transmission electron microscopy and dynamic light scattering results, the micelles were spherical in shape with mean average diameter of 106 ± 5 nm. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

6.
The synthesis of block copolymers consisting of a polyethylene segment and either a poly(meth)acrylate or polystyrene segment was accomplished through the combination of postmetallocene-mediated ethylene polymerization and subsequent atom transfer radical polymerization. A vinyl-terminated polyethylene (number-average molecular weight = 1800, weight-average molecular weight/number-average molecular weight =1.70) was synthesized by the polymerization of ethylene with a phenoxyimine zirconium complex as a catalyst activated with methylalumoxane (MAO). This polyethylene was efficiently converted into an atom transfer radical polymerization macroinitiator by the addition of α-bromoisobutyric acid to the vinyl chain end, and the polyethylene macroinitiator was used for the atom transfer radical polymerization of n-butyl acrylate, methyl methacrylate, or styrene; this resulted in defined polyethylene-b-poly(n-butyl acrylate), polyethylene-b-poly(methyl methacrylate), and polyethylene-b-polystyrene block copolymers. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 496–504, 2004  相似文献   

7.
A block copolymer (PS-b-poly(l-Glu)) composed of polystyrene and poly(l-glutamic acid) was used as a stabilizer for dispersion polymerization of styrene. When dispersion polymerization of styrene was conducted at 70 °C in 80% dimethylformamide-water with 0.5 wt% PS-b-poly(l-Glu), spherical polystyrene particles with Dn = 0.72 μm and narrow size distribution were obtained. Whereas AIBN concentration did not have any effects on particle size, molecular weight of the polystyrene particles was strongly dependent on the initiator concentration. As concentration of the PS-b-poly(l-Glu) increased from 0.2 to 1.0 wt%, particle size decreased from Dn = 0.91 to 0.69 μm with keeping surface area occupied by one poly(l-glutamic acid) chain about = 50 nm2. On the other hand, an increase in initial concentration of styrene from 2 to 20 wt% caused an increase in particle size from Dn = 0.48 to 1.36 μm and a decrease in surface area per poly(l-glutamic acid) block from = 91 to 45 nm2. Colloidal stability of the polystyrene particles in aqueous solution was responsive to pH due to the surface-grafted poly(l-glutamic acid). For dispersion polymerization of styrene, the PS-b-poly(l-Glu) functions as both a stabilizer and a surface modifier.  相似文献   

8.
To prepare intermediary layer crosslinked micelles, a photocrosslinkable amphiphilic ABC triblock copolymer, poly(ethylene glycol)-b-poly(2-cinnamoyloxyethyl methacrylate)-b-poly(methyl methacrylate) (PEG-PCEMA-PMMA), was synthesized and its micellar characteristics were investigated. The triblock copolymer of PEG-b-poly(2-hydroxyethyl methacrylate)-b-PMMA (PEG-PHEMA-PMMA) (M= 9800 g/mol, Mw/Mn = 1.33) was first polymerized by activators generated by electron transfer (AGET) atom transfer radical polymerization (ATRP) using a PEG macroinitiator in a mixed solvent of anisole/2-isopropanol (3/1 v/v). The middle block of the copolymer was then functionalized with cinnamoyl chloride. The degrees of polymerization of the PEG, PHEMA, and PMMA blocks were 113, 18 and 21, respectively. The critical micelle concentration (CMC) of the PEG-PCEMA-PMMA was 0.011 mg/mL. The PEG-PCEMA-PMMA micelles were spherically shaped with an average diameter of 43 nm. The intermediary layer of the PEG-PCEMA-PMMA micelles was crosslinked by UV irradiation. Not all of the cinnamate groups underwent photocrosslinking probably due to a lack of other cinnamate groups in their immediate vicinity. However, the degree of photocrosslinking of the intermediary layer of the PEG-PCEMA-PMMA micelles was sufficient to give excellent colloidal stability, even in different external environments.  相似文献   

9.
Well-defined poly(dimethylsiloxane)-b-poly(2,2,3,3,4,4,4-heptafluorobutyl methacrylate-b-poly(styrene) (PDMS-b-PHFBMA-b-PS) triblock copolymers were prepared by two-step reversible addition-fragmentation chain transfer (RAFT) polymerization. The two-step RAFT polymerization proceeded in a controlled manner as demonstrated by the macromolecular characteristics of the blocks and corresponding polymerization kinetic data. Furthermore, surface properties and morphologies of the polymers were investigated with static water contact angle (WCA) measurement, X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and atomic force microscopy (AFM) which showed low surface energy and microphase-separation surfaces.  相似文献   

10.
A new protocol for preparation of thermoresponsive poly(N-isopropylacrylamide, NIPAM) containing block copolymers is described. It involves two successive heterogeneous controlled/living nitroxide-mediated polymerizations (NMPs) in supercritical carbon dioxide (scCO2) using N-tert-butyl-N-[1-diethylphosphono-(2,2-dimethylpropyl)]nitroxide (SG1), as the nitroxide. Precipitation NMPs give narrow dispersity macroinitiators (MIs), and a first report of the controlled/living polymerization of N,N-dimethylacrylamide (DMA) in scCO2 is described. The MI is then used in an inverse suspension NMP of NIPAM in scCO2 resulting in the efficient preparation of block copolymers containing DMA, tert-butyl acrylate and styrene. Aqueous cloud point temperature analysis for poly(DMA)-b-poly(NIPAM) and poly(acrylic acid)-b-poly(NIPAM) shows a significant dependence on poly(NIPAM) chain length for a given AB block copolymer.  相似文献   

11.
Well-defined poly(4-vinylpyridine) (P4VP) was synthesised by nitroxide-mediated radical polymerization using the BlocBuilder MAMA-SG1. The controlled character of the polymerization was confirmed by kinetic measurements and linear increase of the molar mass with monomer conversion. Poly(4-vinylpyridine) terminated with SG1 was then used as macroinitiator and chain extended to form poly(4-vinylpyridine-b-methyl methacrylate) and poly(4-vinylpyridine-b-(methyl methacrylate-co-styrene)) block copolymers. These block copolymers spontaneously organized into spherical inverse micelles in THF with critical micelle concentrations of 0.1 mg/mL for poly(4VP190-b-MMA91) and 0.01 mg/mL for poly(4VP190-b-(MMA57-co-S18)) and sizes of 70 and 130 nm (DLS), respectively. The inverse micelles were loaded with copper(II)acetate leading to a slight increase in micelle size. The uniform structure of the inverse micelles was confirmed by FeSEM images, while the presence of copper in the micelle core was established by energy-dispersive X-ray spectroscopy (EDX) and FTIR spectroscopy.  相似文献   

12.
Silica nanoparticles (NSiO2) are modified with mixed polymer brushes derived from a block copolymer precursor, poly(methyl methacrylate)-b-poly(glycidyl methacrylate)-b-poly(tert-butyl methacrylate) with short middle segment of PGMA, through one step ??grafting-onto?? approach. The block polymer precursors are prepared via reversible addition?Cfragmentation chain transfer-based polymerization of methyl methacrylate, glycidyl methacrylate, and tert-butyl methacrylate. The grafting is achieved by the reaction of epoxy group in short PGMA segment with silanol functionality of silica. After hydrolysis of poly(tert-butyl methacrylate) segment, amphiphilic NSiO2 with ??V-shaped?? polymer brushes possessing exact 1:1 molar ratio of different arms were prepared. The functionalized particles self-assemble at oil/water interfaces to form stable large droplets with average diameter ranging from 0.15?±?0.06 to 2.6?±?0.75?mm. The amphiphilicity of the particles can be finely tuned by changing the relative lengths of poly(methyl methacrylate) and poly(methacrylic acid) segments, resulting in different assembly behavior. The method may serve as a general way to control the surface property of the particles.  相似文献   

13.
A series of AB and ABA block copolymers of pDEGMEMA-b-pCHMA and pCHMA-b-pDEGMEMA-b-pCHMA cyclohexyl methacrylate (CHMA) and di(ethylene glycol) methyl ether methacrylate (DEGMEMA) with Mn ranging between 18,000 and 50,000 g mol−1 and PDI = 1.09-1.32 were prepared via copper(I) mediated living radical polymerization with pyridylmethanimine ligands. Aggregation properties were investigated using a combination of 1H NMR, dynamic and static light scattering. For comparative purposes poly(CHMA) and poly(DEGMEMA) homopolymers were prepared. The CAC values estimated for the di- and triblock copolymers soluble in cyclohexane are lower than 0.005 g L−1 whereas the values found for block copolymers in methanol solutions are less than 0.070 g L−1. DLS analysis showed the presence of micellar aggregates with diameters ranging from 25 to 40 nm with particle polydispersity indexes between 0.003 and 0.183. The pCHMA-b-pDEGMEMA-b-pCHMA micelles solubilized the aqueous phase in petrol/gasoline. The block copolymer-based micelles incorporate water within their hydrophilic domains, potentially overcoming a number of practical problems such as the formation of biphasic mixtures in solvent blends due to undesired water accumulation.  相似文献   

14.
The preparation of some unique block copolymers and block copolymer particles via radical heterophase polymerization is described. Special emphasis is placed on double hydrophilic block copolymers such as poly(styrene sulfonic acid)-b-poly(methacrylic acid) diblock copolymer and double hydrophilic block copolymer particles consisting of both hydrophilic shells and cross-linked hydrophilic cores. Examples are given for the application of such particles as adsorbents, nano-reactors for chemical synthesis, and as colloidal stabilizers in both heterophase polymerization and biomineralization reactions.  相似文献   

15.
A new styrene derivative monomer, 4-(N-carbazolyl)methyl styrene (CzMS), was synthesized by reacting 4-chloromethyl styrene with carbazole in the presence of sodium hydride. Then, CzMS was homopolymerized and copolymerized with different monomers such as methyl methacrylate (MMA), ethyl methacrylate (EMA), methyl acrylate (MA), ethyl acrylate (EA) and n-butyl acrylate (BA) by free radical polymerization method in N,N-di-methylformamide (DMF) solution at 70 ± 1 °C using azobisisobutyronitrile initiator to give the copolymers I-V in good yields. The structure of all the resulted polymers was characterized and confirmed by FT-IR, 1H NMR and 13C NMR spectroscopic techniques. The average molecular weight and glass transition temperature of polymers were determined using gel permeation chromatograph (GPC) and differential scanning calorimeter (DSC) instruments, respectively. It was found that these polymers with carbazole moieties have high thermal stability and the presence of bulk carbazole groups in polymer side chains leads to an increase in the rigidity and glass transition temperature of polymers.  相似文献   

16.
Anionic polymerization techniques have been implemented successfully in a commercial automated synthesizer. The main problems for a successful adaptation of the experimental technique in the automated synthesizer are addressed, as well as some simple potential applications, such as the anionic polymerization of styrene, isoprene, and methyl methacrylate. The obtained results were reproducible and in concordance with literature knowledge. The apparent rate constant of the anionic polymerization of styrene in cyclohexane initiated by sec‐butyllithium could be determined at two different concentrations of the monomer and initiator in a temperature range of 10–60 °C. All the synthesis and characterization experiments of the polymers were performed within a short time period. Moreover, the syntheses of poly(styrene‐b‐isoprene) and poly(styrene‐b‐methyl methacrylate) block copolymers were also successfully carried out within the automated synthesizer. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4151–4160, 2005  相似文献   

17.
A self-assembled diblock copolymer containing styrene (S), methyl methacrylate and a certain percentage of hydrophilic segment of poly(methacrylic acid) (i.e., poly(styrene)-block-poly(methyl methacrylate/methacrylic acid) was synthesized via the ATRP method in two steps. This was followed by a partial hydrolysis of the methyl ester linkages of the methyl methacrylate block under acidic conditions. The resultant block copolymer had a narrow molecular weight dispersity (Р< 1.3) and was characterized using FT-IR and Raman spectroscopy as well as size exclusion chromatography. The block copolymer was used as a nanoreactor for inorganic nanoparticles (ZnO). The incorporation of a single source precursor, such as ZnCl2, into the self-assembled copolymer matrix and the conversion into ZnO nanostructures was carried out in the liquid phase using wet chemical processing techniques. We report the synthesis and characterization of nanocomposites with dual characteristics due to the functionalities incorporated into the matrix. The optical properties were determined by UV–Vis and fluorescence, the crystallinity was studied using X-ray diffraction, and the thermal stability and studies of the cyclic voltammetry were obtained by thermogravimetric analyzes and potentiodynamic electrochemical measurements, respectively. The structural, topographical and morphological characterizations of the ZnO composite in relation to the precursor block copolymer were analyzed via scanning electron microscopy, transmission electron microscopy and atomic force microscopy.  相似文献   

18.
Isotactic polypropylene block copolymers, isotactic-polypropylene-block-poly (methyl methacrylate) (i-PP-b-PMMA) and isotactic-polypropylene-block-polystyrene (i-PP-b-PS), were prepared by atom transfer radical polymerization (ATRP) using a brominated styrene-terminated isotactic polypropylene macroinitiator synthesized from bromination of styrene-terminated isotactic polypropylene. The styrene-terminated isotactic polypropylene can be obtained by polymerization of propylene in the presence of styrene and hydrogen chain transfer agents using a rac-Me2Si[2-methyl-4-(1-naphyl)Ind]2ZrCl2 as catalyst. The molecular weights of isotactic polypropylene block copolymers were controlled by altering the amount of hydrogen used in the polymerization of propylene and the amount of monomer used in the blocking reaction. The effect of i-PP-b-PS block copolymer on PP-PS blends and that of i-PP-b-PMMA block copolymer on PP-PMMA blends were studied by scanning electron microscopy.  相似文献   

19.
Well-defined amphiphilic block copolymers composed of hydrophilic and hydrophobic blocks linked through an acid-labile acetal bond were synthesized directly by RAFT polymerization using a new poly(ethylene glycol) (PEG) macroRAFT agent modified with an acid-labile group at its R-terminal. The new macroRAFT agent was used for polymerization of poly(t-butyl methacrylate) (PtBMA) or poly(cholesterol-methacrylate) (PCMA) to synthesize well-defined block copolymers with a PEG block sheddable under acidic conditions. The chain extension polymerization kinetics showed known traits of RAFT polymerization. The molecular weight distributions of the copolymers prepared using the new macroRAFT agent remained below 1.2 during the polymerizations and the molecular weight of the copolymers was linearly proportional to monomer conversions. The acid-catalyzed hydrolysis behavior of the PEG-macroRAFT agent and the PEG-b-PtBMA (Mn = 13,600 by GPC, PDI = 1.10) was studied by GPC, 1H NMR and UV–vis spectroscopy. The half-life of acid-hydrolysis was 70 min at pH 2.2 and 92 h at pH 4.0. The potential use of the pH-labile shedding behavior of the copolymers was demonstrated by conjugating a thiol-modified siRNA to ω-pyridyldisulfide modified PEG-b-PCMA. The resultant PEG-b-PCMA-b-siRNA triblock modular polymer released PCMA-b-siRNA segment in acidic and siRNA segment in reductive conditions, as confirmed by polyacrylamide gel electrophoresis.  相似文献   

20.
A series of structurally controllable poly(lauryl methacrylate)-b-poly[N-(2-methacryloylxyethyl)pyrrolidone], PLMA-b-PNMP, diblock copolymers were synthesized by reversible addition–fragmentation chain transfer polymerization. The self-assembly behaviors of PLMA-b-PNMP in a selective solvent, tetrahydrofuran (THF), were studied by employing static light scattering, dynamic light scattering, and transmission electron microscopy in detail. The relationships between the aggregation parameters, such as critical micelle concentration and the aggregation number (N agg), and the molecular structure were established. It was found that spherical micelles can be formed once the solvophobic block length of poly[N-(2-methacryloylxyethyl)pyrrolidone] is larger than 215. Moreover, extremely small and monodisperse gold nanoparticles (<2 nm) were synthesized by employing PLMA-b-PNMP diblock copolymers in THF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号