首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
To better understand the effect of rectorite and carbon black (CB) on the aging performance of styrene-butadiene rubber (SBR), SBR/CB, SBR/CB/rectorite and SBR/rectorite nanocomposites with the same total filler loading were prepared. The microstructure of the three SBR nanocomposites was characterized by XRD, TEM and SEM. After thermal aging, oxygen-containing molecules were found to be formed in the SBR nanocomposites, as verified by FTIR analysis. The SBR/rectorite nanocomposite showed the highest aging coefficient and the lowest change rate of tensile strength and stress at 100% strain among the three SBR nanocomposites, indicating that the introduction of nano-dispersed rectorite layers can enhance the thermal aging resistance of the nanocomposites. For the SBR/CB/rectorite nanocomposite, the addition of CB helped to improve the interfacial compatibility between the filler and matrix, resulting in the best crack resistance as the aged SBR/CB/rectorite nanocomposite always demonstrated the least cracks on the surface during either stretching or bending experiments.  相似文献   

2.
采用原位插层法制备了CdS-TiO2/累托石纳米复合材料. 以X射线粉未衍射、电镜、红外光谱、漫反射吸收光谱及液氮吸附比表面积测定等方法对其微结构和性能进行了分析与表征. 并以罗丹明B(RB)为模拟有机污染物, 对比研究了累托石、TiO2/累托石与CdS-TiO2/累托石的吸附和光催化性能. 结果表明, 与累托石相比, CdS-TiO2/累托石具有更复杂的多孔结构、更大的孔体积和比表面积以及更有效的光吸收能力; 该类复合材料表现出良好的吸附性能和光催化降解活性.  相似文献   

3.
用有机改性的层状累托石与环氧树脂复合制备出纳米复合材料 .通过改变累托石含量发现在很低含量 (0 5W % )时纳米复合材料具有最佳力学和热学性能 ,冲击强度增加 12 0 % ,断裂伸长率增加 330 %玻璃化转变温度提高 2 8℃ .用X衍射、透射电镜和红外吸收光谱研究了材料的微观结构 ,结果表明层状累托石和环氧树脂发生了化学反应 ,观测到了层状累托石完全剥离和插层两种结构形态 ,且累托石含量较低时容易形成剥离型 .具有大的比表面积、高的反应活性的累托石片层分散于环氧基体中形成剥离型为主的结构有利于改善复合材料的力学性能并增加其热稳定性 .  相似文献   

4.
Ester-based polyurethane (PU) with low glass transition temperature was used to develop shape memory nanocomposites with low trigger temperature. Pristine carbon nanotubes (CNTs) and oxidized CNTs (ox-CNTs) were introduced by melt mixing to improve the mechanical and shape memory properties of the PU matrix. The dispersion of CNTs on the mechanical properties and shape memory behaviors of the nanocomposites were also investigated. The results show that better dispersion of ox-CNTs contributes to more stiffness effect below glass transition temperature (Tg) while lower storage modulus (E′) above Tg. The nanocomposites exhibit high shape fixity and recovery ratio above 98%. The ox-CNT/PU nanocomposite shows higher shape recovery ratio for the first cycle, faster recovery due to better dispersion of CNTs and have potential applications for controlling tags or proof marks in the area of frozen food. The trigger temperature can be tailored by controlling the Tg of the PU matrix or the content of the nanofillers.  相似文献   

5.
To optimize the preparation process for ethylene vinyl acetate (EVA)/rectorite nanocomposites during the melt extrusion, the effect of rectorite on the rheological property of molten polymer has been explored in this paper. The dispersion of rectorite in EVA was probed by X‐ray diffraction, and the rheological behaviors of EVA copolymer and EVA/rectorite nanocomposites during the extrusion process were investigated by means of HAAKE minilab. The positron results reveal that introducing the rectorite in EVA matrix increases the interfaces in composites. And the rheological results indicate that the viscosity of EVA and EVA/rectorite nanocomposites in the molten state was influenced by the processing temperature, processing time and shearing rate. For all the samples, the viscosity increases with increasing the shear rate, and decreases with increasing extrusion temperature. Moreover, compared with the pure EVA, the EVA/rectorite nanocomposite presents a lower viscosity at the same processing condition. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
Graphene oxide (GO) is used as a stabilizer in the Pickering emulsion polymerization of methyl methacrylate (MMA) to prepare PMMA/GO nanocomposites. Transmission electron microscope studies of the emulsion polymerization products showed that the average diameter of nanocomposite particles was about 150 nm, the transparent GO flakes covered the surface of the particles, and were well dispersed in polymer matrix. The influence of GO on the thermal stability of PMMA was investigated by thermogravimetry analysis and differential scanning calorimetry. The results showed that the thermal stability and the glass transition temperature (T g) of PMMA/GO nanocomposites were improved obviously compared with PMMA. The apparent activation energy (E a) for the degradation process of PMMA/GO nanocomposites was evaluated by Kissinger method, which indicated that their E a s were much higher than those of PMMA both in nitrogen and air atmosphere.  相似文献   

7.
新环氧树脂纳米复合材料的合成和结构研究   总被引:1,自引:0,他引:1  
以具有层状硅酸盐结构的累托石(REC)为主体,以烷基季铵盐为改性剂合成了有机累托石(OREC),以有机累托石和环氧树脂复合,制备出纳米复合材料。累托石含量在0.8wt.% 时,纳米复合材料具有最佳力学和热学性能,冲击强度增加到65.6 kJm-2,断裂伸长率从4.7 %增加到20.2 %,玻璃化转变温度提高到 197.9 ℃。用X-小角衍射法、透射电镜和红外吸收光谱研究了材料的微观结构,XRD 衍射图显示,未经处理REC 的层间距d001 = 2. 2 nm,经有机改性后,累托石片层间距扩大到2.8 nm,与环氧树脂复合后,其层间距扩大到4.2 nm 左右,FT-IR图显示,有机累托石中出现十六胺的特征吸收峰,TEM照片显示该复合材料是一种纳米复合材料。  相似文献   

8.
To have a better insight into the effect of interaction between polymer matrix and clay on the properties of nanocomposite, poly(methyl methacrylate)/clay nanocomposites were prepared by a heterocoagulation method. Using a reactive cationic emulsifier, methacryloyloxyethyltrimethyl ammonium chloride (METAC), a strong polymer–clay interaction was obtained with the advantage of keeping a consistent polymer matrix property. X‐ray diffraction and transmission electronic microscopy indicated an exfoliated structure in nanocomposites. The glass transition temperature (Tg) of the nanocomposites was measured by DSC and DMA. The DMA results showed that with a strong interaction, PMMA–METAC nanocomposite showed a 20 °C enhancement in glass transition temperature (Tg), whereas a slight increase in Tg was observed for PMMA–cetyl trimethylammonium bromide (CTAB)/clay nanocomposite with a weak interaction. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 733–738, 2010  相似文献   

9.
Poly(propylene carbonate) (PPC) is a new biodegradable aliphatic polycarbonate. However, the poor thermal stability and low glass transition temperatures (Tg) have limited its applications. To improve the thermal properties of PPC, organophilic montmorillonite (OMMT) was mixed with PPC by a solution intercalation method to produce nanocomposites. An intercalated-and-flocculated structure of PPC/OMMT nanocomposites was confirmed by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The thermal and mechanical properties of PPC/OMMT nanocomposites were investigated by thermal gravimetric analysis (TGA), differential scanning calorimetric (DSC), and electronic tensile tester. Due to the nanometer-sized dispersion of layered silicate in polymer matrix, PPC/OMMT nanocomposites exhibit improved thermal and mechanical properties than pure PPC. When the OMMT content is 4 wt%, the PPC/OMMT nanocomposite shows the best thermal and mechanical properties. These results indicate that nanocomposition is an efficient and convenient method to improve the properties of PPC.  相似文献   

10.
Surface modified silver nanoparticles dispersed in chloroform were encapsulated in poly(methylmethacrylate) (PMMA) by in-situ radical polymerization of methyl methacrylate initiated by 2,2′-azobisisobutyronitrile. The particle size distribution of colloidal silver nanoparticles was determined using transmission electron microscopy. The obtained transparent nanocomposite films were characterized using UV-vis spectroscopy, 1H NMR spectroscopy and gel permeation chromatography. Effective medium Maxwell-Garnett theory was used in order to explain optical properties of nanocomposite films taking into account inhomogeneous spatial distribution of silver nanoparticles in PMMA matrix. The influence of the silver nanoparticles on the thermal properties of the PMMA matrix was investigated using thermo-gravimetric analysis and differential scanning calorimetry. Thermo-oxidative stability of the PMMA in the presence of low content of inorganic phase is significantly improved. The glass transition temperatures of nanocomposites are slightly lower compared to the pure polymer.  相似文献   

11.
In this report, we demonstrate that both the thermal stability and the thermal conductivity of bromobutyl rubber (BIIR) nanocomposites could be improved by incorporating the ionic liquids (ILs) modified graphene oxide (GO-ILs) using a solution compounding method. The structure, thermal stability and thermal conductivity of this newly modified BIIR nanocomposites were systematically analyzed and studied. The X-ray diffraction (XRD) analysis of GO-ILs showed that ILs had been effectively intercalated into the interlayer of GO, which was found to be able to raise the exfoliation degree of GO. The increased exfoliation degree facilitated a good dispersion of GO-ILs in the BIIR matrix, as revealed by the scanning electron microscope (SEM) images. The glass transition temperatures (Tg) of the GO-ILs/BIIR nanocomposites were also raised by the addition of GO-ILs, which indicates the strong interfacial adhesion between GO-ILs and the rubber. Most importantly, the incorporation of GO-ILs in the BIIR matrix could effectively improve the thermal stability of the rubber nanocomposites according to our thermogravimetric analysis (TGA). The activation energy (Ea) of thermal decomposition of GO-ILs/BIIR nanocomposites increases with the addition of GO-ILs. Besides, the thermal conductivity of GO-ILs/BIIR nanocomposite with 4 wt% of GO-ILs had 1.3-fold improvement compared to that of unfilled BIIR.  相似文献   

12.
Here, we report the preparation of nano silver (Ag) and nano Ag-erbium (Ag–Er) co-embedded potassium–zinc-silicate based monolithic glass nanocomposites by a controlled heat-treatment process of precursor glasses. The nanocomposites were characterized by differential scanning calorimeter, dilatometer, UV–Visible absorption spectrophotometer, X-ray diffractometer and transmission electron microscope and spectroflurimeter. A strong surface plasmon resonance (SPR) band is observed around 430 nm in all the heat-treated glass nanocomposite samples due to the formation of Ag0 nanoparticles (NP). The Ag-glass nanocomposite samples display nearly 2-fold enhanced photoluminescence (PL) at 470 nm upon excitation at 290 nm until the size of the NP increases to the value equals to the mean free path of conduction electrons inside the particles. On contrary to this, the photoluminescence spectra of Er3+ ions exhibit a gradual decrease of NIR emission at 1540 nm due to 4I13/2 → 4I15/2 transition under excitation at 523 nm in the heat-treated glass nanocomposites which happened due to excitation energy transfer of Er3+ ions to the Ag NP, acting as ‘plasmonics diluents’ for Er3+ ions. These nanocomposites have huge potential for various nanophotonic applications.  相似文献   

13.
This article addresses the synthesis of organically tailored Ni-Al layered double hydroxide (ONi-Al LDH) and its use in the fabrication of exfoliated poly(methyl methacrylate) (PMMA) nanocomposites. The pristine Ni-Al LDH was initially synthesized by co-precipitation method and subsequently modified using sodium dodecyl sulfate to obtain ONi-Al LDH. Nanocomposites of PMMA containing various amounts of modified Ni-Al LDH (3 wt%-7 wt%) were synthesized via solvent blending method to investigate the influence of LDH content on the properties of PMMA matrix. Several characterization methods such as X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), rheological analysis, differential scanning calorimetry (DSC) and thermo gravimetric analysis (TGA), were employed to examine the structural, viscoelastic and thermal properties of PMMA/OLDH nanocomposites. The results of XRD and TEM examination confirm the formation of partially exfoliated PMMA/OLDH nanocomposites. The FTIR results elucidate that the characteristic bands for both pure PMMA and modified LDH are present in the spectra of PMMA/OLDH nanocomposites. Rheological analyses were carried out to examine the adhesion between polymer matrix and fillers present in the nanocomposite sample. The TGA data indicate that the PMMA nanocomposites exhibit higher thermal stability when compared to pure PMMA. The thermal decomposition temperature of PMMA/OLDH nanocomposites increases by 28 K compared to that of pure PMMA at 15% weight loss as a point of reference. In comparison with pure PMMA, the PMMA nanocomposite containing 7 wt% LDH demonstrates improved glass transition temperature (T g) of around 3 K. The activation energy (E a), reaction orders (n) and reaction mechanism of thermal degradation of PMMA/OLDH nanocomposites were evaluated using different kinetic models. Water uptake capacity of the PMMA/OLDH nanocomposites is less than that of the pure PMMA.  相似文献   

14.
Nanocomposites of poly(hexamethylene terephthalate) (PHT) and montmorillonite organo-modified with alkylammonium cations bearing two primary hydroxyl functions, i.e., Cloisite® 30B (CL30B) were synthesized. Organoclay incorporation was performed either by dispersion in the PHT matrix via melt blending or by in situ ring-opening polymerization of hexamethylene terephthalate cyclic oligomers c(HT). An additional procedure combining the two methods, preparation of a highly enriched inorganic “PHT-CL30B” nanohybrid masterbatch by in situ ring-opening polymerization and blending of the masterbatch with additional PHT was explored. The obtained nanocomposites contain 3% (w/w) of inorganics and displayed a mixture of intercalated morphology and exfoliated nanolayers as evidenced by X-ray diffraction and transmission electron microscopy. The nanocomposite obtained by the masterbatch technique exhibited a higher degree of exfoliation and displayed slightly higher glass transition temperatures, better mechanical properties and higher flame resistance. The improved results achieved with the “masterbatch route” are a consequence of the reactions occurring between the nanocomposite constituents allowing for the grafting of PHT chains onto the organoclay surface.  相似文献   

15.
In this work, ABC-type triblock copolymer grafted onto the surface of the MWCNT/acid functionalized MWCNT (MWCNT-COOH) composites were prepared and the properties of nanocomposites were characterized extensively using differential scanning calorimetry (DSC), scanning electronic microscopy (SEM), thermogravimetric analysis (TGA), ac electrical conductivity and dielectrical measurements.

DSC study showed that the glass transition temperatures of the nanocomposites are a some higher than that of the matrix polymer. The increase in oxidized MWCNT in the nanocomposite improved the thermal stability of the composite, according to initial decomposition temperatures. The ac electrical conductivity has increased moderately with increasing frequency, but has increased slowly with increase in the oxidized MWCNT content in the nanocomposites. The electrical conductivity increases slowly with increasing temperature to about the glass transition temperature, then it increases faster. The dielectric constants for the matrix polymer and all the composites decreases slightly with increasing frequency from 0.1 kHz to 2.0 kHz. The dielectric constant increases slightly with increasing temperature up to about the glass transition temperature region and then the increase in temperature is accelerated the increase in the dielectric constant.  相似文献   

16.
We have used molecular simulations to study the properties of nanocomposites formed by the chemical incorporation of polyhedral oligomeric silsesquioxane (POSS) particles in the cross-linked epoxy network. The particular POSS molecule chosen—glycidyloxypropyl-heptaphenyl POSS—can form only one bond with the cross-linker and thus was present as a dangling unit in the network. Four epoxy-POSS nanocomposites containing different fractions (up to 30 mass/%) of POSS particles were studied in this work. Well-relaxed atomistic model structures of the nanocomposites were created and then molecular dynamics simulations were used to characterize the density, glass transition temperature (T g), and the coefficient of volume thermal expansion (CVTE) of the systems. In addition to the effect of nanoparticle loading, the effect of nanoparticle chemistry on the nanocomposite properties was also characterized by comparing these results with our previous results (Lin and Khare, Macromolecules 42:4319–4327, 2009) on neat cross-linked epoxy and a nanocomposite containing a POSS nanoparticle that formed eight bonds with the cross-linked network. Our results showed that incorporation of these monofunctional POSS particles into cross-linked epoxy does not cause a measurable change in its density, glass transition temperature, or the CVTE. Furthermore, simulation results were used to characterize the aggregation of POSS particles in the system. The nanofiller particles in systems containing 11, 20, and 30 mass/% POSS were found to form small clusters. The cluster-size distribution of nanoparticles was also characterized for these systems.  相似文献   

17.
The glass transition is a genuine imprint of temperature-dependent structural relaxation dynamics of backbone chains in amorphous polymers, which can also reflect features of chemical transformations induced in macromolecular architectures. Optimization of thermophysical properties of polymer nanocomposites beyond the state of the art is contingent on strong interfacial bonding between nanofiller particles and host polymer matrix chains that accordingly modifies glass transition characteristics. Contemporary polymer nanocomposite configurations have demonstrated only marginal glass transition temperature shifts utilizing conventional polymer matrix and functionalized nanofiller combinations. We present nanofiller-contiguous polymer network with aromatic thermosetting copolyester nanocomposites in which carbon nanofillers covalently conjugate with cure advancing crosslinked backbone chains through functional end-groups of constituent precursor oligomers upon an in situ polymerization reaction. Via thoroughly transformed backbone chain configuration, the polymer nanocomposites demonstrate unprecedented glass transition peak broadening by about 100 °C along with significant temperature upshift of around 80 °C. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 1595–1603  相似文献   

18.
刘天西  韦春 《高分子科学》2014,32(1):115-122
Polyamide I1 (PAll) and its nanocomposites with different organoclay loadings were prepared by melt-compounding and subsequent pelletizing. The crystal phase transitions of PAl 1 and its clay nanocomposites were investigated by variable-temperature X-ray diffraction. It was found that the Brill transition of the nanocomposite was 20 K higher than that of the neat PAl 1 for both heating and cooling processes. The PAl 1 d-spacings of the nanocomposites were observed to be smaller than those of the neat PAl 1 for melt crystallization. The constraints imposed by the addition of layered clay, restricting the thermal expansion of the polymer chains, are probably responsible for such a reduction of the d-spacing.  相似文献   

19.
Nanostructured wollastonite was synthesized by a sol–gel method and then used as a filler for polypropylene (PP). The obtained wollastonite particles were investigated using XRD, TEM and FTIR techniques. Non-isothermal crystallization measurements revealed that the wollastonite filler reduced the crystallization temperature of the matrix. TGA analyses showed improved thermal stability of the nanocomposite with respect to that of the pure polypropylene. From the DMA tan δ curves, it was concluded that the introduction of the filler into the PP matrix induced a slight shift of the β-transition (glass transition) towards higher temperature. The measurements of storage moduli showed that the nanocomposites have higher stiffness than the pure PP over the whole range of test temperature. An increase in stiffness was also confirmed by tensile measurements.  相似文献   

20.
In this study, two types of magnetic polyurethane (PU) elastomer nanocomposites using polycaprolactone (PCL) and polytetramethylene glycol (PTMG) as polyols were synthesized by incorporating thiodiglycolic acid surface modified Fe3O4 nanoparticles (TSM‐Fe3O4) into PU matrices through in situ polymerization method. TSM‐Fe3O4 nanoparticles were prepared using in situ coprecipitation method in alkali media and were characterized by X‐ray diffraction, Fourier Transform Infrared Spectrophotometer, Transmission Electron Microscopy, and Vibrating Sample Magnetometer. The effects of PCL and PTMG polyols on the properties of the resultant PUs were studied. The morphology and dispersion of the nanoparticles in the magnetic nanocomposites were studied by Scanning Electron Microscope. It was observed that dispersion of nanoparticles in PTMG‐based magnetic nanocomposite was better than PCL‐based magnetic nanocomposite. Furthermore, the effect of polyol structure on thermal and mechanical properties of nanocomposite was investigated by Thermogravimetric Analysis and Dynamic Mechanical Thermal Analysis. A decrease in the thermal stability of magnetic nanocomposites was found compared to pure PUs. Furthermore, DMTA results showed that increase in glass transition temperature of PTMG‐based magnetic nanocomposite is higher than PCL‐based magnetic nanocomposite, which is attributed to better dispersion of TSM‐Fe3O4 nanoparticles in PTMG‐based PU matrix. Additionally, magnetic nanocomposites exhibited a lower level of hydrophilicity compared to pure PUs. These observations were attributed to the hydrophobic behavior of TSM‐Fe3O4 nanoparticles. Moreover, study of fibroblast cells interaction with magnetic nanocomposites showed that the products can be a good candidate for biomedical application. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号