首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of AB and ABA block copolymers of pDEGMEMA-b-pCHMA and pCHMA-b-pDEGMEMA-b-pCHMA cyclohexyl methacrylate (CHMA) and di(ethylene glycol) methyl ether methacrylate (DEGMEMA) with Mn ranging between 18,000 and 50,000 g mol−1 and PDI = 1.09-1.32 were prepared via copper(I) mediated living radical polymerization with pyridylmethanimine ligands. Aggregation properties were investigated using a combination of 1H NMR, dynamic and static light scattering. For comparative purposes poly(CHMA) and poly(DEGMEMA) homopolymers were prepared. The CAC values estimated for the di- and triblock copolymers soluble in cyclohexane are lower than 0.005 g L−1 whereas the values found for block copolymers in methanol solutions are less than 0.070 g L−1. DLS analysis showed the presence of micellar aggregates with diameters ranging from 25 to 40 nm with particle polydispersity indexes between 0.003 and 0.183. The pCHMA-b-pDEGMEMA-b-pCHMA micelles solubilized the aqueous phase in petrol/gasoline. The block copolymer-based micelles incorporate water within their hydrophilic domains, potentially overcoming a number of practical problems such as the formation of biphasic mixtures in solvent blends due to undesired water accumulation.  相似文献   

2.
2-Dimethylaminoethyl methacrylate (DMAEMA) and 2-diethylaminoethyl methacrylate (DEAEMA) block copolymers have been synthesized by using poly(ethylene glycol), poly(tetrahydrofuran) (PTHF) and poly(ethylene butylenes) macroinitiators with copper mediated living radical polymerization. The use of difunctional macroinitiator gave ABA block copolymers with narrow polydispersities (PDI) and controlled number average molecular weights (Mn’s). By using DMAEMA, polymerizations proceed with excellent first order kinetics indicative of well-controlled living polymerization. Online 1H NMR monitoring has been used to investigate the polymerization of DEAEMA. The first order kinetic plots for the polymerization of DEAMA showed two different rate regimes ascribed to an induction period which is not observed for DMAEMA. ABA triblock copolymers with DMAEMA as the A blocks and PTHF or PBD as B blocks leads to amphiphilic block copolymers with Mn’s between 22 and 24 K (PDI 1.24-1.32) which form aggregates/micelles in solution. The critical aggregation concentrations, as determined by pyrene fluorimetry, are 0.07 and 0.03 g dm−1 for PTHF- and PBD-containing triblocks respectively.  相似文献   

3.
Poly(i-butyl methacrylate)-polystyrene block copolymer was successfully prepared in an aqueous medium by two-step atom transfer radical polymerization (ATRP), mini-emulsion- and seeded-ATRP, in which ethyl 2-bromoisobutyrate/CuBr/4,4-dinonyl-2,2-dipyridyl initiator system was used. The block copolymer had narrow molecular weight distribution (Mw/Mn=1.1) and the number-average molecular weight measured by gel permeation chromatography agreed with the calculated value.Part CCXLVIII of the series Studies on Suspension and Emulsion  相似文献   

4.
In this work, the syntheses of poly(butyl methacrylate-b-methyl methacrylate-b-butyl methacrylate) triblock copolymer and poly(methyl methacrylate-b-butyl methacrylate-b-methyl methacrylate-b-butyl methacrylate-b-methyl methacrylate) pentablock copolymers using copper mediated living radical polymerisation are reported. Living radical polymerisations were performed using the system CuIBr/N-(n-propyl)-2-pyridylmethanimine as catalyst in conjunction with a difunctional initiator, the 1,4-(2-bromo-2-methylpropionoto)benzene (1). The syntheses of poly(MMA), poly(BMA-b-MMA-b-BMA) and poly(MMA-b-BMA-b-MMA-b-BMA-b-MMA) are described in detail using 1H NMR spectroscopy and size exclusion chromatography. The living behaviour and the blocking efficiency of these polymerisations were investigated in each case. Difunctional initiator, 1, based on hydroquinone was synthesised and fully characterised and subsequently used to give difunctional poly(methyl methacrylate) macroinitiators with molecular weights up to 54,000 g mol−1 and polydispersity between 1.07 and 1.32; molecular weights were close to the theoretical values. The difunctional macroinitiators were used to reinitiate butyl methacrylate to give triblock copolymers of Mn between 17,500 and 45,700 g mol−1. Polydispersities remained narrow below 25,000 g mol−1 but broadened at higher masses. The difunctional triblock macroinitiators were subsequently used to reinitiate methyl methacrylate to give ABABA pentablock copolymers with Mn up to 37,000 g mol−1 with polydispersity=1.13. Under certain conditions radical-radical reaction led to a broadening of polydispersity index.  相似文献   

5.
The synthesis of new stimulus-responsive block copolymer gelators using atom transfer radical polymerisation (ATRP) in either methanol or 2-propanol/water mixtures at 20 °C is described. Bifunctional and trifunctional initiators were used to prepare ABA triblock and I(BA)3 three-arm star diblock copolymers, respectively, using a ‘one-pot’ ATRP protocol, in which the central block comprised poly(glycerol monomethacrylate) and the outer blocks comprised pH-responsive poly[2-(diethylamino)ethyl methacrylate] or poly[2-(diisopropylamino)ethyl methacrylate]. These copolymers dissolve molecularly in acidic solution but formed free-standing gels at around neutral pH on addition of base. Gel strength was judged by both tube inversion experiments and shear rheometry measurements and a comparison between the linear and star architectures was made.  相似文献   

6.
何金太  程斌 《高分子通报》2005,(1):60-65,81
综述了国内外利用活性正离子聚合转化法合成嵌段聚合物的研究进展。  相似文献   

7.
Polymerisation of vinyl acetate by conventional free radical polymerisation using a diazo initiator followed by copper mediated living radical polymerisation with a range of monomers was studied. This method led to the synthesis of triblock copolymers. We have thus successfully prepared several new ABA triblock copolymers where B is poly(vinyl acetate) and A is (dimethylamino)ethyl methacrylate (DMAEMA), (polyethylene glycol) methyl ether methacrylate (MeO(PEG)MA) or solketal methacrylate (SMA). The sequential conventional/living radical polymerisation approach provided an efficient route to synthesis of new block copolymers. The properties of these amphiphilic polymers have been subsequently investigated by 1H NMR, fluorescence spectroscopy, tensiometry and dynamic light scattering to investigate their behaviour as potential surfactants.  相似文献   

8.
从引发和催化两个方面概述了光辐照在活性自由基聚合(LRP)中的应用,从机理上详细地分析了光辐照对氮氧调控自由基聚合(NMP)、原子转移自由基聚合(ATRP)、可逆加成-断裂链转移自由基聚合(RAFT)以及有机钴催化的可控自由基聚合反应(CMRP)的影响。与传统自由基聚合相比,光调控的活性自由基聚合方法可在温和的条件下生成自由基,能够克服传统LRP的一些缺陷,如降低催化反应活化能、提高聚合物末端官能度等。同时,本文对光调控反应的进一步应用以及新方法的产生也进行了展望。  相似文献   

9.
Raf Bussels 《Tetrahedron》2005,61(5):1167-1174
In a novel two- or three-step synthetic route, S-(1,4-phenylenebis(propane-2,2-diyl)) bis(N-methyldithiocarbamate) is reacted at low temperature with various alkyl chloroformates to form various S-tert-alkyl-N,N-alkoxycarbonylmethyl-dithiocarbamate RAFT agents. Also an alternative and novel synthetic route towards S-(1,4-phenylenebis(propane-2,2-diyl)) bis(N-methyldithiocarbamate), is proposed.  相似文献   

10.
An asymmetric difunctional initiator 2‐phenyl‐2‐[(2,2,6,6 tetramethylpiperidino)oxy] ethyl 2‐bromo propanoate ( 1 ) was used for the synthesis of ABC‐type methyl methacrylate (MMA)‐tert‐butylacrylate (tBA)‐styrene (St) triblock copolymers via a combination of atom transfer radical polymerization (ATRP) and stable free‐radical polymerization (SFRP). The ATRP‐ATRP‐SFRP or SFRP‐ATRP‐ATRP route led to ABC‐type triblock copolymers with controlled molecular weight and moderate polydispersity (Mw/Mn < 1.35). The block copolymers were characterized by gel permeation chromatography and 1H NMR. The retaining chain‐end functionality and the applying halide exchange afforded high blocking efficiency as well as maintained control over entire routes. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2025–2032, 2002  相似文献   

11.
The paper describes the optimization of copper(I) mediated living radical polymerization of N-hydroxysuccinimide methacrylate to achieve AB block copoly(acryl amides) offering a route to polymers with potential biomedical applications. Polymerization of N-hydroxysuccinimide methacrylate was carried out using copper(I) bromide/N-(n-propyl)-2-pyridylmethanimine catalyst with ethyl-2-bromoisobutyrate as the initiator at three different temperatures (70, 50 and 30 °C). Polymerizations at both 70 and 50 °C gave relatively high conversion, 72% and 62% respectively after 4 h. Polymerization at 30 °C the best linear first-order kinetic plot. The polydispersity remained narrow (1.15) and there was a good agreement between experimental, determined by 1H NMR, and theoretical Mn. Polymerization of N-hydroxysuccinimide methacrylate was investigated in more detail by following reactions in situ by 1H NMR. The experimental values of Mn (NMR) were quite close to the theoretical values and the polydispersities were relatively narrow (1.10-1.19). Isolated poly(N-hydroxysuccinimide methacrylate) was used as a macroinitiator for the polymerization of MMA catalyzed by Cu(I)Br in conjunction with N-(n-propyl)-2-pyridylmethanamine ligand leading to block copolymers. A poly(methyl acryl amide) is synthesized indirectly from the reaction of benzyl amine with poly(N-hydroxysuccinimide methacrylate) for 5 h with in DMSO at 50 °C under nitrogen.  相似文献   

12.
利用光气法分别以L-谷氨酸和L-丙氨酸为原料,合成了γ-谷氨酸苄酯-NCA单体和L-丙氨酸-NCA单体,再以三乙胺为引发剂,合成了聚(L-丙氨酸)-聚(γ-谷氨酸苄酯)(PLA50-b-PBLG20)双嵌段共聚多肽,并用乙醇胺对其中的PBLG嵌段进行亲核取代,把疏水性的苄酯侧链变为亲水性的羟烷酰胺侧链,得到双亲性的聚(L-丙氨酸)-聚羟乙基谷氨酰胺(PLA-b-PHEGA)双嵌段共聚多肽.利用红外光谱和核磁共振谱对产物进行了表征,用TEM研究了双嵌段共聚多肽PLA50-b-PHEGA20在水溶液中的自组装.研究结果表明,双嵌段共聚多肽在水溶液中可自组装形成囊泡.  相似文献   

13.
Alpha-trichloroacetoxy terminated polystyrene oligomer (PS-CH_2CH_2OCOCCl_3) and poly-(styrene-b-butadiene)oligomer [P(S-b-B)-CH_2CH_2OCOCCl_3)] were synthesized by living anionic polymeri-zation using n-butyllithium as initiator.Then the PS-CH_2CH_2OCOCCl_3 (PS-Cl_3) or P(S-b-B)-CH_2CH_2O-COCCl_3 (PSB-Cl_3) was used as the macroinitiator in thepolymerization of (meth)acrylates in the presence of CuX/bpy. AB diblock and ABC triblock copolymers were prepared bythe integrated living anionic polymerization (LAP)-atom transfer radical polymerization (ATRP). The structures of the PSB-Cl_3 and the P(S-b-MMA) were identified by FTIR and ~1H-NMR spectrum, respectively. A new way to design blockcopolymers (the combination of LAP and ATRP) was developed.  相似文献   

14.
15.
结构精确的含氟嵌段共聚物具有优异而独特的化学和物理性能,有广阔的应用前景,因此受到广泛的关注.含氟嵌段共聚物可分为两类,一类是侧基含氟嵌段共聚物,另一类是主链含氟嵌段共聚物.活性聚合为嵌段共聚物的合成提供了最为重要的方法,利用它可以合成结构精确、分子量可控、分子量分布窄的嵌段共聚物.根据单体的反应特性选择不同的聚合方法,可以得到不同的含氟嵌段共聚物.本文主要综述了近几年利用各种活性聚合方法合成结构精确的含氟嵌段共聚物方面的进展.  相似文献   

16.
自由基活性聚合及其最新进展   总被引:5,自引:2,他引:5  
本文介绍了实现自由基活性聚合的动力学、热力学条件及可能的途径。在这些条件下自由基保持稳定的低浓度,增长链自由基与休眠种处于动力学平衡动态,可有效地控制聚合反应,使聚合反应具有聚合物分子量随反应时间、单体转化率成线性增长关系及所得聚合物分子量分布较窄的特征,并且在加入第二单体时可继续生成嵌段共聚物。  相似文献   

17.
ABA型两亲嵌段共聚物的合成及表征   总被引:9,自引:0,他引:9  
以α ,α′ 二溴代二甲苯为引发剂 ,CuBr/2 ,2′ 联吡啶为催化体系 ,制备了双溴端基的分子量分布窄的聚苯乙烯 (MWD =1 18) .再以此作为大分子引发剂 ,实现了甲基丙烯酸对硝基苯酯的原子转移自由基聚合 ,制得了分子量可控且分子量分布窄的ABA型嵌段共聚物 ,再经水解、酸化 ,得到了聚甲基丙烯酸 b 聚苯乙烯 b 聚甲基丙烯酸ABA型两亲嵌段共聚物  相似文献   

18.
A novel photo-induced initiating system, 2, 2 - dimethoxy-2-phenylacetophenone (DMPA)/ferric tri(N,N-diethyl-dithiocarbamate) [Fe(DC)_3], was developed and used for the atom transfer radical polymerization (ATRP) of styrene intoluene. The polymerization proceeds with DMPA as photo-initiator, Fc(DC)_3 as catalyst and DC as a reversible transfergroup, while the halogen and ligands are free. Well-defined PSt was prepared and the polymerization mechanism revealed byend group analysis belongs to a reverse ATRP. Block copolymer was prepared by using thus obtained PSt as macroinitiatorand Fe(DC)_2 as catalyst under UV light irradiation via a conventional ATRP process.  相似文献   

19.
Novozyme-435催化10-羟基癸酸进行自缩聚反应得到线性聚酯, 端基分别是羟基(—OH)和羧基(—COOH), 在三乙胺催化下, 分别用α-溴代丙酰溴和三甲基氯硅烷(TMSCL)进行端基官能化生成一个单官能度的大分子引发剂, 在CuCl/2,2'-联吡啶(bpy)催化体系中, 引发甲基丙烯酸环氧丙酯(GMA)的原子转移自由基反应(ATRP), 得到聚(10-羟基癸酸酯)/聚甲基丙烯酸环氧丙酯(PHDA-b-PGMA) AB 型两亲性嵌段共聚物, 其结构及分子量(分布)通过核磁共振和凝胶渗透色谱(GPC)确证. 此AB型两亲性嵌段共聚物在水溶液中能自组装形成纳米粒子, 用原子力显微镜(AFM)观察粒子的形状和大小.  相似文献   

20.
Living radical polymerizations of styrene were performed under emulsion atom transfer radical polymerization conditions with latexes prepared by a nanoprecipitation technique recently developed for the stable free‐radical polymerization process. Latexes were prepared by the precipitation of a solution of low‐molecular‐weight polystyrene in acetone into a solution of a surfactant in water. The resulting particles were swollen with styrene and then heated. The effects of various surfactants and hydrophobic ligands, the reaction temperature, and the ligand/copper(I) bromide ratio were studied. The best results were obtained with the nonionic surfactant Brij 98 in combination with the hydrophobic ligand N,N‐bis(2‐pyridylmethyl)octadecylamine and a ligand/copper(I) bromide ratio of 1.5 at a reaction temperature of 85–90 °C. Under these conditions, latexes with good colloidal stability with average particle diameters of 200 nm were obtained. The molecular weight distributions of the polystyrenes were narrow, although the experimental molecular weights were slightly larger than the theoretical ones because not all the macroinitiator appeared to reinitiate. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4027–4038, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号