首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of sizing/polymer interaction or interphase on dynamic mechanical relaxation properties of cyanate ester composites was investigated by means of dynamic mechanical analysis. The dynamic mechanical behavior of different samples (three types of composites with different sizing and neat resin) was analyzed by using two phenomenological models (TFV and WLF). Related coefficients such as C1, C2, and T (Vogel temperature) were evaluated. Results have shown that these parameters were strongly dependent on sizing state, therefore, on interphase. In addition, the frequency dependence of the molecular relaxation process was well described by the Cole‐Cole plot. These results were confirmed by the sizing extract/resin blend study. Microthermal analysis has shown that partial miscibility existed between resin and sizing extract. Local thermal analyses were carried out by positioning the probe over selected regions: bulk resin and sizing/resin blend. A decrease in resin glass‐transition temperature was observed in the sizing resin blend. The different results have shown that a local plasticization of resin by sizing occurred with crosslink density modification. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 205–214, 2006  相似文献   

2.
Influence of an in situ reactive interphase composed of graft copolymer on the melt shear and extensional rheology was systematically studied with a model bilayer of polyamide-6 (PA6)/maleic anhydride grafted poly(vinylidene fluoride) (PVDF-g-MAH). Firstly, small-amplitude oscillatory shear was used in situ to probe the development of reactive interphase from the interfacial reactions by tracking the changes of viscoelastic responses. Secondly, shear (start-up shear, shear stress relaxation) and extensional rheology was comparatively performed on the healed bilayers to evaluate the effects of reactive interphase. Interestingly, shear stress relaxation and especially extensional rheology were pretty sensitive to the presence of reactive interphase, whereas start-up shear showed negligible sensitivity. Specifically, the reactive interphase retarded the stress relaxation of healed bilayers subjected to step strains. Particularly, extensional rheology provided a more direct and quantitative view of the contribution of reactive interphase to melt rheology in both linear and nonlinear regimes. The remarkable increase in transient extensional viscosity and enhanced strain hardening resulting from the interfacial reaction in bilayer were demonstrated in terms of the interfacial stress. Besides, effect of reaction extent on extensional rheology was further examined, where it was found that interfacial stress increased with reaction time. The observed changes in rheology were attributed to the in situ formed interphase with graft copolymers and the resulting increased entanglements between neighboring layers. This study highlights the remarkable sensitivity of shear stress relaxation and especially extensional rheology to a reactive interphase.  相似文献   

3.
The present study suggests a new approach, based on the utilization of temperature modulated differential scanning calorimetry (TMDSC) technique, for identifying and characterizing the organic?Cinorganic interphase of two materials: an epoxy?Cfumed silica nanocomposite and a thermoplastic polyurethane (TPU)?Cmultiwalled nanotube (MWNT) composite. The approach used here makes use of TMDSC data and basically consists of using the phase angle or the derivative of the reversing heat flow instead of the reversing heat flow curve itself. In the case of epoxy?Cfumed silica composites, two glass transition regions were identified. The glass transition temperature (T g) of the composite was observed to vary as a consequence of the filler content. This study shows that the T g variation is due to the formation of an organic?Cinorganic interphase, with its own glass transition temperature, which is different from the epoxy matrix T g. In the case of TPU?CMWNT composites, two relaxations and an additional first order transition were observed: the first relaxation corresponds to the hard segment, the second is related to an interaction between filler and matrix and the third process may be connected to the partial melting of the hard segment. The addition of 0.5?wt% MWNT causes a small reduction in T g of the TPU. A major nanotube addition, 10?wt%, induces the appearance of a new relaxation that may be associated with the existence of an interface. In general, a better separation between the matrix and interphase glass transitions was obtained by the TMDSC phase angle signal.  相似文献   

4.
The poor interfacial adhesion between carbon fibers (CFs) and polyimide (PI) resin has seriously hampered the application of CF/PI composites. In this work, the interfacial adhesion was efficiently enhanced by grafting on the CF surface. Surface morphology and surface composition of modified carbon fibers were characterized, which indicated that acrylamide was grafted successfully on the CF surface and the surface roughness was increased slightly. After grafting, the interface shear strength of modified carbon fibers/PI composites was significantly improved by 86.96%, and the interlaminar shear strength was enhanced by 55.61% due to the covalent bonds in interphase and the toughening effect of sizing agent. Moreover, the mechanical properties of composites with different interfacial adhesion were measured, which further confirmed the effect of the grafting modification.  相似文献   

5.
To obtain wollastonite-filled β-iPP composites, the wollastonite with β-nucleating surface (β-wollastonite) was prepared through chemical reaction between wollastonite with α-nucleating surface (α-wollastonite) and pimelic acid. The formation of calcium pimelate on the surface of wollastonite was proved using Fourier transform infrared spectrometry and scanning electron microscopy. The crystallization behavior, melting characteristics, non-isothermal crystallization kinetics, and crystalline morphologies of α- and β-wollastonite-filled iPP composites were studied by differential scanning calorimetry and polarizing optical microscopy. It is found that the crystallization peak temperatures of β-wollastonite-filled iPP composites were higher than that of α-wollastonite-filled iPP composites, which indicated that wollastonite with β-nucleating surface has stronger heterogeneous nucleation than that of wollastonite with α-nucleating surface. Although the crystallization temperatures of iPP and iPP composites decreased with increasing cooling rates, α-wollastonite-filled iPP composites mainly crystallized in α-spherulite and β-wollastonite-filled iPP composites formed β-spherulite. In addition, the spherulite size of β-wollastonite-filled iPP composites was smaller than that of α-wollastonite-filled iPP composites. Jeziorny and Mo methods were applicable to study the non-isothermal crystallization kinetics of wollastonite-filled iPP composites. The activation energy (?E) and the nucleation efficiency (EN) of non-isothermal crystallization were calculated by Kissinger method and the equation proposed by Fillon, respectively. The β-wollastonite-filled iPP composites exhibited higher crystallization rate, activation energy, and EN than that of α-wollastonite-filled iPP composites.  相似文献   

6.
The isothermal melt crystallization and the corresponding segmental dynamics, of a high molecular weight poly(ethylene oxide) (PEO) confined by Li7La3Zr2O12 (LLZO) particles in solid electrolyte composites, were monitored by differential scanning calorimetry (DSC) and dielectric relaxation spectroscopy (DRS), respectively. Our results show that the overall crystallinity is positively correlated with the surface area of LLZO particles. The primary and secondary crystallization processes are identified by a modified Avrami equation, while two dynamic modes, the α relaxation and α′ relaxation, were in the DRS measurements. The results reveal an unambiguous correlation between the primary crystallization and the α relaxation, while a correlation between the second crystallization and the α′ relaxation concurrently exist in the electrolyte composites. © 2020 Wiley Periodicals, Inc. J. Polym. Sci. 2020 , 58, 466–477  相似文献   

7.
Epoxy resin composites reinforced with E-glass (E), 3D glass (3D) and carbon fibre (CF) were subjected to an intense UV and high temperature accelerated degradation environment. X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) were used to provide a molecular characterisation of the surface of the degraded composites. The response at the surface of the epoxy resin composites to oxidative degradation is influenced by the composite reinforcement type and characteristics. XPS results indicate that 3D resin composites exhibit more surface oxidation as a result of the accelerated degradation in comparison with E and CF composites. Principal components analysis (PCA) of the ToF-SIMS positive ion spectra showed that E and 3D resin composites suffered chain scission while CF composites suffered chain scission and cross-linking reactions as a result of the intense UV exposure. The extent of the surface oxidation, cross-linking/condensation reaction and loss of low molecular weight (lower than C4Hx) aliphatic hydrocarbons may be indicated using PCA of both the ToF-SIMS positive and negative ion spectra. PCA also provides insight for proposing epoxy resin chain scission and oxidation reaction mechanisms.  相似文献   

8.
Epoxy acrylate resin was prepared by endcapping the acrylic acid to epoxy resin backbone in the presence of triphenyl phosphene as catalyst. The structure was elucidated by IR and NMR spectroscopy. Epoxy and epoxy acrylate composites were prepared by mixing different concentrations of mica, magnesium hydroxide and calcium silicate with each epoxy/hardener and epoxy acrylate/styrene mixtures, respectively. The permittivity ε′, dielectric loss ε′′ and loss tangent tan δ were measured for these composites in the frequency range (102-10Hz) and at 30 °C. The data obtained were analyzed into two absorption regions related to Maxwell-Wagner effect and to some local molecular motions rather than the main chain motion. The higher values of ε′ and the lower values of tan δ given for the composites containing the epoxy acrylate resin indicate some improvement in the dielectric properties when compared with those containing the epoxy resin. The effect of filler type and filler content on the positron annihilation lifetime and its intensity as well as S-parameter for epoxy and epoxy acrylate composites were also studied. The high values of S-parameter noticed by with increasing filler content indicates some increase in free electrons which lead to an increase in electrical conductivity. The highest value of hardness was obtained in the case of calcium silicate followed by mica and magnesium hydroxide.  相似文献   

9.
In this work, we report a new strategy of introducing thorns-like fiber into composites, so that the resultant composites substantially benefit from strong fiber–matrix interface adhesion. Specifically, the “thorns” could increase in interlocking molecules chains and entangle with the surrounding matrix resin, which could impede the mobility of polymer chains, as like the roots with uplift capacity. Strong interfacial adhesion between fibers and matrices is suggested by the SEM images and the DMA studies. After the thorns-like fibers are embedded into epoxy resin, the glass transition temperature (Tg) and the storage modulus (E′) are higher than these of neat epoxy and untreated fibers-reinforced epoxy, respectively, and the flexural properties of the composites reinforced with thorns-like fibers are significantly increased. Therefore these novel three dimensional thorns-like fibers will be applicable for composite materials based upon its unique architecture, making it an attractive alternative to increase the performance of any matrix resin.  相似文献   

10.
A detailed dielectric characterization of n-ethylene glycol dimethacrylate monomers with n = 2 and 4 is provided. Besides the α relaxation associated to the glass transition, two secondary relaxation processes were detected: the γ process assigned to the twisting motions within the ethylene glycol moiety, and the β process related with hindered rotations of carboxylic groups. While the relaxation time of the γ process is independent of the size of the ethylene glycol group, the β process deviates to higher times with increasing n. Upon polymerization the α process goes to extinction, faster in the 4-ethylene monomer, with a concomitant depletion of the β process that remains at higher polymerization degrees relatively to the α process, thus acting as a more sensitive probe to evaluate conversion. The height decrease of α and β processes of monomers with the polymerization progress, occurs without significant changes of position. At intermediate states of polymerization, a new relaxation process evolves being only detectable in a narrow temperature range. In the end, the polymer networks show, in addition to the γpol relaxation identical to the γ relaxation of the monomer, a βpol relaxation with similar features to the β relaxation found in poly n-alkyl methacrylates originated by a π flip of the ester unit accompanied by a restricted main chain rearrangement. The main dielectric relaxation corresponding to the swollen polymer network should appear at quite high temperatures already in early stages of the polymerization process because phase segregation occurs and only a limited amount of liquid monomer plasticizes the newly formed material.  相似文献   

11.
Thermally Stimulated Creepe and Current (TSCr and TSC) have been used for investigating the interface/interphase in DGEBA-DDA matrix and glass beads composites. In all samples, a complex α retardation/relaxation mode is observed near the glass transition of the matrix. A study of the fine structure has shown that, for the elastic processes, the activation enthalpies are ranging from 2 and 8 eV, while for the dielectric ones, they are restricted between 0.5 and 1.5 eV. Moreover, for a given activation enthalpy, the preexponential factor τo and the activation entropy ΔS are characteristic of matrix filler interface.  相似文献   

12.
Being abundant and active,Fe_2O_3 is suitable for selective oxidation of H_2S.However,its practical application is limited due to the poor sulfur selectivity and rapid deactivation.Herein,we report a facile template-free hydrothermal method to fabricate porous α-Fe_2O_3/SnO_2 composites with hierarchical nanoflower that can obviously improve the catalytic performance of Fe_2O_3.It was disclosed that the synergistic effect between α-Fe_2O_3 and SnO_2 promotes the physico-chemical properties of α-Fe_2O_3/SnO_2 composites.Specifically,the electron transfer between the Fe~(2+)/Fe~(3+) and Sn~(2+)/Sn~(4+) redox couples enhances the reducibility of α-Fe_2O_3/SnO_2 composites.The number of oxygen vacancies is improved when the Fe cations incorporate into SnO_2 structure,which facilitates the adsorption and activation of oxygen species.Additionally,the porous structure improves the accessibility of H_2 S to active sites.Among the composites,Fe1 Sn1 exhibits complete H_2 S conversion with 100% sulfur selectivity at 220℃,better than those of pure α-Fe_2O_3 and SnO_2.Moreover,Fe1 Sn1 catalyst shows high stability and water resistance.  相似文献   

13.
The influence of wollastonite (CaSiO3) content on the crystallization properties and thermal stability of polypropylene (PP) composites was investigated. The results showed that the crystallization temperature, crystallization end temperature and crystallization temperature interval, as well as the degree of crystallinity of the composites, were higher than those of the unfilled PP resin, while the crystallization onset temperature was little changed from that of the unfilled PP resin. The increase of degree of crystallinity for the composites could be attributed to the heterogeneous nucleation of the CaSiO3 in the PP matrix. The thermal stability increased with increasing filler weight fraction (ϕf); the thermal decomposition rate decreased nonlinearly with increasingϕf. Finally, the dispersion of the filler particles in the matrix was observed, and the mechanisms of thermal stability and crystallizing behavior were discussed.  相似文献   

14.
Resin composites have been widely used in dental restoration. However, polymerization shrinkage and resultant bacterial microleakage are major limitations that may lead to secondary caries. To overcome this, a new type of antibacterial resin composite containing ciprofloxacin-loaded silver nanoparticles (CIP-AgNPs) were synthesized. The chemical reduction approach successfully produced CIP-AgNPs, as demonstrated by FTIR, zeta potential, scanning electron microscopy, and ultraviolet-visible (UV-vis) spectroscopy. CIP-AgNPs were added to resin composites and the antibacterial activity of the dental composite discs were realized against Enterococcus faecalis, Streptococcus mutans, and the Saliva microcosm. The biocompatibility of modified resin composites was assessed and mechanical testing of modified dental composites was also performed. The results indicated that the antibacterial activity and compressive strength of resin composites containing CIP-AgNPs were enhanced compared to the control group. They were also biocompatible when compared to resin composites containing AgNPs. In short, these results established strong ground application for CIP-AgNP-modified dental composite resins.  相似文献   

15.
PBS/nano-CaCO3 composites with various nano-CaCO3 weight fractions were prepared by melt blending. The thermal behavior, dynamic mechanical properties and rheological properties of the composites were investigated. DSC measurements revealed that the nano-CaCO3 particles had little influence on the crystallization and melting behavior of PBS. Thermogravimetric analysis showed that the introduction of nano-CaCO3 tended to improve the thermal stability of PBS. Dynamic mechanical analysis showed that the G′ and G″ of the PBS/nano-CaCO3 composites were improved significantly when the nano-CaCO3 content was not more than 3wt%, while the G′ and G″ were mainly decided by the PBS matrix when the nano-CaCO3 content exceeded 3wt%. Rheological results showed that G′ < G″ over the frequency range, illustrating the viscous behavior of the samples. The η* of all the samples remained almost constant when the frequency was not more than 0.25 rad/s, which showed the characteristic of a Newtonian fluid. A strong shear thinning effect was observed for all the samples when the frequency exceeded 0.25 rad/s. Furthermore, the microstructure and the relaxation mechanism of the PBS/nano-CaCO3 composites mainly depended on the PBS matrix.  相似文献   

16.
宋义虎 《高分子科学》2013,31(2):325-332
Nano-sized rod-like titanium dioxide (TiO2) filled rigid poly(vinyl chloride) (PVC) nanocomposites were prepared by using injection-molding method. Vicat, Charpy impact and tensile tests as well as thermogravimetric and dynamic mechanical analyses were used to characterize the structure and properties of the nanocomposites. The results showed that nano-TiO2 could improve Vicat softening temperature and also improve thermal stability of PVC during the stages of dehydrochlorination and formation of carbonaceous conjugated polyene sequences, which can be ascribed to restriction of the nanoparticles on the segmental relaxation as being evidenced by raises in glass transition and β-relaxation temperatures of PVC upon filling TiO2. Addition of TiO2 nanoparticles less than 40 phr (parts per hundreds of resin) could significantly improve impact strength of the composites while the TiO2 agglomeration at high contents leads to a reduction in impact toughness.  相似文献   

17.
The effect of curing process of thermosetting powder coating consists of carboxylated polyester resin cured with triglycidyl isocyanurate has been investigated using broadband dielectric relaxation spectroscopy over a wide range of frequency (10−1-106 Hz) and temperature (70-105 °C) for different constant curing times. The molecular dynamics of the glass relaxation process (α-process) was investigated as a function of curing time, frequency, and temperature. It has been found that, only one common α-relaxation process has been observed for all measured samples of different degree of curing stages, its dynamics and broadness were found to be curing time dependent. In addition, the curing time dependence of the dielectric relaxation strength, Δε, has also been examined for the α and β-relaxation processes. The Δε for the two relaxation processes decreased strongly at the beginning of curing process and then became almost constant at longer curing times. This finding implied that the numbers of reoriented dipoles decrease with curing time as a result of the formation of three-dimensional polymer network. Furthermore, the dislocation energy, εs, calculated from the Meander model was found to be increased with increasing the curing time, i.e. the formation of a three-dimensional polymer network produces many structural defects or dislocation points. In addition, the activation energy of the curing process was calculated from the analysis of the calorimetric exothermic peaks of the curing process at different heating rates.  相似文献   

18.
Photon correlation spectroscopy has been used to study relaxation processes in bulk polymers: PEA and PEMA, above the glass transition temperature under high pressure. In the case of PEA one relaxation process was observed over the whole pressure range of 1–2000 bar. This process is assigned to the localized backbone motion of the polymer chain. In PEMA two overlaping relaxation modes have been found. Quantitative characterization of these two modes was possible after their separation in the time domain, which was achieved by applying high pressure to the sample. It was found that an additionalα-methyl group in PEMA (in comparison with PEA) causes an appearance of an additional relaxation mode which can be assigned to the side group motion. Moreover, the localized backbone motion in PEMA is more cooperative because of a hindrance effect due to the presence of the additionalα-methyl side group. The obtained results are in a good agreement with the previous dielectric relaxations studies.  相似文献   

19.
Poly(vinylidene fluoride) (PVDF)-multiwalled carbon nanotube (MWNT) composites with different aspect ratios of MWNT were prepared by a coagulation method. Field emission scanning electron and transmission electron microscopic studies reveal that MWNT are well dispersed in the PVDF matrix. The X-ray diffraction and differential scanning calorimeter data indicate that the composites with high aspect ratio of MWNT have the β phase structure at the MWNT loading level of 2.0wt%, and have a mixture of α and β phase below 2wt% MWNT, and that those composites with low aspect ratio of MWNT, however, always have a mixture of α and β phase for MWNT concentrations ?2.0wt%. The dielectric constant values increase with the increase in MWNT loading level and the percent increase in dielectric constant is much greater in the composite filled with high aspect ratio of MWNT than in that loaded with low aspect ratio. And also, it has been found that the dielectric loss of the composites with MWNT loading level ?2.0wt% is still as low as neat PVDF, which is of significance for dielectric application.  相似文献   

20.
Thermal and rheological properties of plant-based natural filler-reinforced polyethylene bio-composites applying various filler loadings as well as the impacts of the different compatibilizers were investigated by means of differential scanning calorimetry and dynamic mechanical thermal analysis (DMTA). As lignocellulosic materials, such as rice-husk flour and wood flour, are eco-friendly biomaterials and a thermoplastic polymer, for example, high-density polyethylene, has good physico-mechanical and thermal properties, therefore their bio-composites can combine and utilize these two advantages at the same time. The temperature of the α-relaxation (T α) slightly increased and melting temperatures (T m) of the matrix polymer in the case of the studied bio-composites did not shift significantly as the filler loading changed, because the rigid interphase hinders the motion of polymer segments resulting in the increase in T α and only weak interactions developed at the interface between the matrix polymer and the reinforcement in the case of non-compatibilized composites. However, compatibility between the reinforcement and the matrix polymer was enhanced by incorporating compatibilizers, which further improved stiffness. From the DMTA experiment, the reinforcements result in composite samples having higher storage modulus (E′) than the neat polymer sample, indicating that incorporating lignocellulosic filler increased their stiffness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号