首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Summary: Two multifunctional iniferters, 1,4-bis-(α-N,N-diethyldithiocarbamyl-isobutyryloxy)-benzene (BDCIB) and 1,3,5-tris-(α-N,N-diethyldithiocarbamyl-isobutyryloxy)-benzene (TDCIB), were successfully synthesized and used as initiators to initiate the polymerization of styrene in the presence of a CuBr/PMDETA complex. The polymerization results demonstrated that the kinetic plots in all cases were first-order to the monomer, the molecular weight of the polymers increased linearly with the monomer conversion; meanwhile, the molecular weight distribution of the polymer was kept to a very low value (Mw/Mn ≤ 1.35). Furthermore, the measured molecular weights were very close to the calculated values, which indicated the high efficiency of the initiator for the polymerization of styrene. The effect of catalyst concentration and initiator concentration was not obvious and the influence of polymerization temperature was apparent, and the polymerization rate increased with the polymerization temperature. The results of chain-extension and 1H NMR analysis proved that the polymer obtained was capped with diethylthiocarbamoylthiy (DC) group.  相似文献   

2.
To prepare water‐soluble, syndiotacticity‐rich poly(vinyl alcohol) (PVA) microfibrils for various industrial applications, we synthesized syndiotacticity‐rich, low molecular weight PVA by the solution polymerization of vinyl pivalate (VPi) in tetrahydrofuran (THF) at low temperatures with 2,2′‐azobis(2,4‐dimethylvaleronitrile) (ADMVN) as an initiator and successive saponification of poly(vinyl pivalate) (PVPi). Effects of the initiator and monomer concentrations and the polymerization temperature were investigated in terms of the polymerization behaviors and molecular structures of PVPi and the corresponding syndiotacticity‐rich PVA. The polymerization rate of VPi in THF was proportional to the 0.91 power of the ADMVN concentration, indicating the heterogeneous nature of THF polymerization. The low‐temperature solution polymerization of VPi in THF with ADMVN proved to be successful in obtaining water‐soluble PVA with a number‐average degree of polymerization (Pn) of 300–900, a syndiotactic dyad content of 60–63%, and an ultimate conversion of VPi into PVPi of over 75%. Despite the low molecular weight of PVA with Pn = 800, water‐soluble PVA microfibrillar fibers were prepared because of the high level of syndiotacticity. In contrast, for PVA with Pn = 330, shapeless and globular morphologies were observed, indicating that molecular weight has an important role in the in situ fibrillation of syndiotacticity‐rich PVA. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1103–1111, 2002  相似文献   

3.
The vinyl of the ester group of 2-vinyloxyethyl methacrylate was first selectively reacted with acetic acid to obtain 2-[1-(acetoxy)ethoxy]ethyl methacrylate ( 2 ). This protected monomer was subjected to anionic polymerization in tetrahydrofuran at −60°C in the presence of LiCl, using 1,1-diphenylhexyllithium as initiator. The molecular weight of the polymer could thus be controlled and a narrow molecular weight distribution obtained. The protecting group, 1-(acetoxy)ethyl, could be easily eliminated (by quenching the polymerization reaction with methanol and water) to generate poly(2-hydroxyethyl methacrylate) (poly(HEMA)). Block copolymers were also prepared by the sequential anionic polymerization of MMA and 2 or styrene and 2 . They possess narrow molecular weight distributions, and controlled molecular weights and compositions. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1865–1872, 1998  相似文献   

4.
无规聚丙烯接枝甲基丙烯酸的合成   总被引:1,自引:0,他引:1  
采用溶液聚合的方法将无规聚丙烯 (APP)与甲基丙烯酸 (MAA)接枝共聚制得接枝共聚物APP -g -MAA。讨论了反应温度、反应时间、引发剂BPO浓度、单体MAA浓度对接枝率的影响。结果表明 :当聚合反应温度低于是 12 0℃时 ,接枝率随温度升高而降低。延长反应时间有利于提高接枝率。最适宜的引发剂浓度为 1% ,MAA/APP配比为 0 .2 5/1。利用红外光谱证实了接枝物APP-g -MAA的存在。  相似文献   

5.
用Cu(phen) 2 Br/1 PEBr催化引发体系合成了分子量为 50 0 0左右的溴端基聚苯乙烯 (PS Br) .以后者为大分子引发剂 ,在Cu( phen) 2 Br存在下引发甲基丙烯酸甲酯 (MMA)或丙烯酸丁酯 (BA)聚合 ,合成了二嵌段共聚物PS b PMMA和PS b PBA ,并通过GPC、IR、1H NMR及DSC等进行了表征 .实验发现 ,丙烯酸甲酯(MA)在Phen/CuCl/CCl4 催化引发下发生爆聚反应 ,仅当和异丁基乙烯基醚 (IBVE)才发生可控的自由基共聚合反应 .当MA和IBVE的投料摩尔比为 1∶1时 ,所得共聚物中两种单体链节的组成比为 1∶1 7左右 .  相似文献   

6.
With CuBr/tetramethylguanidino‐tris(2‐aminoethyl)amine (TMG3‐TREN) as the catalyst, the atom transfer radical polymerization (ATRP) of methyl methacrylate, n‐butyl acrylate, styrene, and acrylonitrile was conducted. The catalyst concentration of 0.5 equiv with respect to the initiator was enough to prepare well‐defined poly(methyl methacrylate) in bulk from methyl methacrylate monomer. For ATRP of n‐butyl acrylate, the catalyst behaved in a manner similar to that reported for CuBr/tris[2‐(dimethylamino)ethyl]amine. A minimum of 0.05 equiv of the catalyst with respect to the initiator was required to synthesize the homopolymer of the desired molecular weight and low polydispersity at the ambient temperature. In the case of styrene, ATRP with this catalyst occurred only when a 1:1 catalyst/initiator ratio was used in the presence of Cu(0) in ethylene carbonate. The polymerization of acrylonitrile with CuBr/TMG3‐TREN was conducted successfully with a catalyst concentration of 50% with respect to the initiator in ethylene carbonate. End‐group analysis for the determination of the high degree of functionality of the homopolymers synthesized by the new catalyst was determined by NMR spectroscopy. The isotactic parameter calculated for each system indicated that the homopolymers were predominantly syndiotactic, signifying that the tacticity remained the same, as already reported for ATRP. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5906–5922, 2005  相似文献   

7.
Controlled radical polymerization of 4‐vinylpyridine (4VP) was achieved in a 50 vol % 1‐methyl‐2‐pyrrolidone/water solvent mixture using a 2,2′‐azobis(2,4‐dimethylpentanitrile) initiator and a CuCl2/2,2′‐bipyridine catalyst–ligand complex, for an initial monomer concentration of [M]0 = 2.32–3.24 M and a temperature range of 70–80 °C. Radical polymerization control was achieved at catalyst to initiator molar ratios in the range of 1.3:1 to 1.6:1. First‐order kinetics of the rate of polymerization (with respect to the monomer), linear increase of the number–average degree of polymerization with monomer conversion, and a polydispersity index in the range of 1.29–1.35 were indicative of controlled radical polymerization. The highest number–average degree of polymerization of 247 (number–average molecular weight = 26,000 g/mol) was achieved at a temperature of 70 °C, [M]0 = 3.24 M and a catalyst to initiator molar ratio of 1.6:1. Over the temperature range studied (70–80 °C), the initiator efficiency increased from 50 to 64% whereas the apparent polymerization rate constant increased by about 60%. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5748–5758, 2007  相似文献   

8.
2-Methoxy ethyl acrylate (MEA), a functional monomer was homopolymerized using atom transfer radical polymerization (ATRP) technique with methyl 2-bromopropionate (MBP) as initiator and CuBr/N,N,N′,N′,N″-pentamethyldiethylenetriamine (PMDETA) as catalyst system; polymerization was conducted in bulk at 60 °C and livingness was established by chain extension reaction. The kinetics as well as molecular weight distribution data indicated towards the controlled nature of polymerization. The initiator efficiency and the effect of initiator concentration on the rate of polymerization were investigated. The polymerization remained well-controlled even at low catalyst concentration of 10% relative to initiator. The influence of different solvents, viz. ethylene carbonate and toluene on the polymerization was investigated. End-group analysis for the determination of high degree of functionality of PMEA was determined with the help of 13C{1H} NMR spectra. Chain extension experiment was conducted with PMEA macroinitiator for ATRP of acrylonitrile (AN) in ethylene carbonate at 70 °C using CuCl/bpy as catalyst system. The composition of individual blocks in PMEA-b-PAN copolymers was determined using 1H NMR spectra.  相似文献   

9.
新型含硅聚芳醚酮的合成与表征   总被引:5,自引:0,他引:5  
对FeBr3/Me6TREN催化的反向原子转移自由基聚合进行了研究。在不同的催化剂、引发剂的配比、聚合温度和配体用量等条件下,该催化体系催化的MMA聚合反应动力学为一级反应。聚合物分子量可控,分子量分布很窄,说明该体系催化的聚合反应为活性可控聚合,通过实验计算了反应的活化能,并利用UV光谱对催化剂进行了研究。  相似文献   

10.
Amphiphilic block copolymers were synthesized via a dual initiator chain transfer agent (inifer) that successfully initiated the ring opening polymerization (ROP) of l -lactide (LLA) and subsequently mediated the reversible addition-fragmentation chain transfer (RAFT) polymerization of poly(ethylene glycol) ethyl ether methacrylate (PEGEEMA). The formation of each polymer block was confirmed using 1H nuclear magnetic resonance spectroscopy, as well as gel permeation chromatography, and comprehensive kinetics studies provide valuable insights into the factors influencing the synthesis of well-defined block copolymers. The effect of monomer concentration, reaction time, and molar ratios of inifer to catalyst on the ROP of LLA are discussed, as well as the ability to produce poly(lactide) blocks of different molecular weights. The synthesis of hydrophilic PPEGEEMA blocks was also monitored via kinetics to provide a better understanding of the role the chain transfer agent plays in facilitating the complex and sterically demanding RAFT polymerization of PEGEEMA.  相似文献   

11.
翁中亚  薛芸  施文君  王彦  阎超 《色谱》2016,34(5):467-472
以丙烯酰胺(AM)为单体,八乙烯基倍半硅氧烷(POSS)为交联剂,偶氮二异丁腈(AIBN)为引发剂,四氢呋喃(THF)为致孔剂,通过原位聚合法制备了poly(POSS-co-AM)有机-无机杂化整体柱,并对各反应物的配比进行了优化。结果表明,当功能单体与致孔剂、POSS与AM的质量比均为1.0: 5.0, AIBN的质量分数为0.1%时,杂化整体柱的柱效最高。无机材料的引入使整体柱结构均匀并具有良好的渗透性,该整体柱既能用于亲水色谱模式,也能用于反相色谱模式。将制备的整体柱用于毛细管液相色谱和加压毛细管电色谱分离核苷类、胺类、硝基苯胺类等化合物,获得了良好的效果。  相似文献   

12.
Abstract

In this work was evaluated the activity of samarium acetate (III) (Sm(OAc)3) as a possible initiator in the polymerization by ring opening of trimethylene carbonate (TMC). All polymerizations were carried out under solvent-free melt conditions in ampoules-like flasks, equipped with a magnetic stirrer. The effects of different parameters of reaction, such as molar ratio monomer to initiator, temperature and reaction time, on typical variables of polymers, e.g., conversion of TMC to poly(trimethylene carbonate) (PTMC), dispersity and molar mass, were analyzed. The molar ratio of monomer to initiator was varied between 0 and 1000?mol/mol and the temperature among 70 and 150?°C. Nuclear Magnetic Resonance (1H-NMR and HMBC) and Size Exclusion Chromatography (SEC) were used to characterize the polymers. The results indicate that the Sm(OAc)3 induces the polymerization of TMC to high conversion with number-average molecular weights of 3.11?×?103 to 38.40?×?103?Da. Based on the 1H-NMR end-group analysis of low-molecular-weight PTMC, it was proposed a coordination–insertion mechanism for the polymerization, with a breakdown of the acyl-oxygen bond of the TMC. In according to the kinetic study carried out, the polymerization rate is first-order with respect to monomer concentration with apparent rate constants of kap?=?7.02?×?10?4?mol?×?L?1?×?h?1.  相似文献   

13.
2‐Cyanoprop‐2‐yl dithionaphthalenoate (CPDN) was successfully used as the chain transfer agent to prepare polyacrylonitrile in combination with manganese(III) acetylacetonate (Mn(acac)3) as the initiator. The novel polymerization exhibited well “living”/controlled characteristics. The polymerization behavior was revealed to comply with features of reversible addition–fragmentation chain transfer polymerization process. Mn(acac)3 played a key role as the initiator rather than the radical trapping agent in polymerization and exhibited better control performance than azo‐initiator. The narrowest molecular weight distribution was 1.31 under the condition of [AN]0:[Mn(acac)3]0:[CPDN]0 = 200:1:0.025 and AN:DMF = 1:1 (V/V). Various feed ratios of Mn(acac)3 and CPDN were also investigated in detail. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1305–1309  相似文献   

14.
For the first time, ligand‐free Cu(0)‐mediated polymerization of methyl methacrylate (MMA) was realized by the selection of ethyl‐2‐bromo‐2‐phenylacetate as initiator at ambient temperature. The polymerization can reach up to 90% conversion within 5 h with dimethyl sulfoxide (DMSO) as solvent, while keeping manners of the controlled radical polymerization. Extensive investigation of this system revealed that for a well‐controlled Cu(0)‐mediated polymerization of MMA, the initiator should be selected with the structure as alkyl 2‐bromo‐2‐phenylacetate, and the solvent should be DMSO or N,N‐dimethylformamide. The selectivity for solvents indicated a typical single‐electron transfer‐living radical polymerization process. Scanning for other monomers indicated that under equal conditions, the polymerizations of other alkyl (meth)acrylates were uncontrollable. Based on these results, plausible reasons were discussed. The ligand‐free Cu(0)‐mediated polymerization showed its superiority with economical components and needless removal of Cu species from the resultant products. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

15.
丙烯酰胺在聚乙二醇水溶液中聚合产品的微观形态   总被引:2,自引:0,他引:2  
采用偶氮类水溶性引发剂2,2′-偶氮二异丙基咪唑啉二盐酸盐(VA044)引发丙烯酰胺(AM)在聚乙二醇(PEG)水溶液中的双水相聚合;研究了引发剂、单体、聚乙二醇浓度及温度对最终产品中聚丙烯酰胺(PAM)液滴形态、尺寸的影响.随着引发剂浓度的增加,液滴由球状变为细长条状;随着温度的上升,球状液滴逐渐趋于条状,然后又重新趋于球状;在初始单体浓度较低时,PAM液滴滴径分布较窄,当其浓度增加后,滴径呈多峰分布;随着PEG浓度的增加,聚合物液滴趋于球状。  相似文献   

16.
The emulsion atom transfer radical block copolymerization of 2‐ethylhexyl methacrylate (EHMA) and methyl methacrylate (MMA) was carried out with the bifunctional initiator 1,4‐butylene glycol di(2‐bromoisobutyrate). The system was mediated by copper bromide/4,4′‐dinonyl‐2,2′‐bipyridyl and stabilized by polyoxyethylene sorbitan monooleate. The effects of the initiator concentration and temperature profile on the polymerization kinetics and latex stability were systematically examined. Both EHMA homopolymerization and successive copolymerization with MMA proceeded in a living manner and gave good control over the polymer molecular weights. The polymer molecular weights increased linearly with the monomer conversion with polydispersities lower than 1.2. A low‐temperature prepolymerization step was found to be helpful in stabilizing the latex systems, whereas further polymerization at an elevated temperature ensured high conversion rates. The EHMA polymers were effective as macroinitiators for initiating the block polymerization of MMA. Triblock poly(methyl methacrylate–2‐ethylhexyl methacrylate–methyl methacrylate) samples with various block lengths were synthesized. The MMA and EHMA reactivity ratios determined by a nonlinear least‐square method were ~0.903 and ~0.930, respectively, at 70 °C. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1914–1925, 2006  相似文献   

17.
用单组分三(2,6-二叔丁基4甲基苯氧基)钇配合物[Y(OAr)3]引发丙烯腈聚合,发现介质对聚合反应的影响很大,在介电常数较大的极性溶剂N,N-二甲基甲酰胺(DMF)中,AN聚合反应的活性较高,在50℃下聚合3h,丙烯腈聚合反应转化率达到94%,所得聚丙烯腈(PAN)含52%间规结构.在DMF中聚合反应速率与单体、引发剂的浓度分别呈一级关系,丙烯腈聚合反应的表观活化能为22.1kJ·mol-1.  相似文献   

18.
富勒烯衍生物引发的富勒烯末端封端聚己内酯的合成   总被引:2,自引:1,他引:1  
利用带活性羟基的N-取代3,4-富勒烯吡咯烷作为引发剂,引发ε-己内酯开环聚合,制备了一种具有新型结构的富勒烯末端封端聚己内酯,通过核磁共振(1H NMR,13C NMR)、红外光谱(FTIR)和基质辅助激光解吸电离飞行时间质谱(MALDI-TOF-MS)等手段对产物进行了结构表征,并用热重(TG)分析和差示扫描量热(DSC)分析的方法进行了热学性能分析.结果表明,与聚己内酯相比产物热稳定性增加.  相似文献   

19.
The “living’/controlled radical polymerization (LRP) of styrene (St) at room temperature is rarely reported. In this work, copper(0) (Cu(0))-mediated radical polymerization of St at room temperature was investigated in detail. Dimethyl sulfoxide (DMSO), N,N-dimethylformamide (DMF) as well as a binary solvent, tetrahydrofuran/1,1,1,3,3,3-hexafluoro-2-propanol were used as the solvents, respectively. Methyl-2-bromopropionate and ethyl 2-bromoisobutyrate were used as the initiators, respectively. The polymerization proceeded smoothly with moderate conversions at room temperature. It was found that DMF was a good solvent with the essential features of LRP, while DMSO was a poor solvent with uncontrollable molecular weights. Besides, the match among the initiator, solvent and molar ratios of reactants can modulate the livingness of the polymerization, and the proper selection of ligand was also crucial to a controlled process. This work provided a first example of Cu(0)-mediated radical polymerization of St at room temperature, which would enrich and strength the LRP technique.  相似文献   

20.
Surface‐confined atom transfer radical polymerization was used to prepare gold nanoparticle–poly(methyl methacrylate) core–shell particles at elevated temperature. First, gold nanoparticles were prepared by the one‐pot borohydride reduction of tetrachloroaurate in the presence of 11‐mercapto‐1‐undecanol (MUD). MUD‐capped gold nanoparticles were then exchanged with 3‐mercaptopropyltrimethoxysilane (MPS) to prepare a self‐assembled monolayer (SAM) of MPS on the gold nanoparticle surfaces and subsequently hydrolyzed with hydrochloric acid. The extent of exchange of MUD with MPS was determined by NMR. The resulting crosslinked silica‐primer layer stabilized the SAM of MPS and was allowed to react with the initiator [(chloromethyl)phenylethyl] trimethoxysilane. Atom transfer radical polymerization was conducted on the Cl‐terminated gold nanoparticles with the CuCl/2,2′‐bipyridyl catalyst system at elevated temperature. The rates of polymerization with the initiator‐modified gold nanoparticles exhibited first‐order kinetics with respect to the monomer, and the number‐average molecular weight of the cleaved graft polymer increased linearly with the monomer conversion. The presence of the polymer on the gold nanoparticle surface was identified by Fourier transform infrared spectroscopy and transmission electron microscopy. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3631–3642, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号