首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The subgrid-scale (SGS) model in a large-eddy simulation (LES) operates on a range of scales which is marginally resolved by discretization schemes. Accordingly, the discretization scheme and the subgrid-scale model are linked. One can exploit this link by developing discretization methods from subgrid-scale models, or the converse. Approaches where SGS models and numerical discretizations are fully merged are called implicit LES (ILES). Recently, we have proposed a systematic framework for the design, analysis, and optimization of nonlinear discretization schemes for implicit LES. In this framework parameters inherent to the discretization scheme are determined in such a way that the numerical truncation error acts as a physically motivated SGS model. The resulting so-called adaptive local deconvolution method (ALDM) for implicit LES allows for reliable predictions of isotropic forced and decaying turbulence and of unbounded transitional flows for a wide range of Reynolds numbers. In the present paper, ALDM is evaluated for the separated flow through a channel with streamwise-periodic constrictions at two Reynolds numbers Re = 2,808 and Re = 10,595. We demonstrate that, although model parameters of ALDM have been determined for isotropic turbulence at infinite Reynolds number, it successfully predicts mean flow and turbulence statistics in the considered physically complex, anisotropic, and inhomogeneous flow regime. It is shown that the implicit model performs at least as well as an established explicit model.   相似文献   

2.
We compare the space-time correlations calculated from direct numerical simulation(DNS) and large-eddy simulation(LES) of turbulent channel flows.It is found from the comparisons that the LES with an eddy-viscosity subgrid scale(SGS) model over-predicts the space-time correlations than the DNS.The overpredictions are further quantified by the integral scales of directional correlations and convection velocities.A physical argument for the overprediction is provided that the eddy-viscosity SGS model alone does not includes the backscatter effects although it correctly represents the energy dissipations of SGS motions.This argument is confirmed by the recently developed elliptic model for space-time correlations in turbulent shear flows.It suggests that enstrophy is crucial to the LES prediction of spacetime correlations.The random forcing models and stochastic SGS models are proposed to overcome the overpredictions on space-time correlations.  相似文献   

3.
Explicitly filtered large-eddy simulations (LES), combining high-accuracy schemes with the use of a selective filtering without adding an explicit subgrid-scales (SGS) model, are carried out for the Taylor-Green-vortex and the supersonic-boundary-layer cases. First, the present approach is validated against direct numerical simulation (DNS) results. Subsequently, several SGS models are implemented in order to investigate if they can improve the initial filter-based methodology. It is shown that the most accurate results are obtained when the filtering is used alone as an implicit model, and for a minimal cost. Moreover, the tests for the Taylor-Green vortex indicate that the discretization error from the numerical methods, notably the dissipation error from the high-order filtering, can have a greater influence than the SGS models.  相似文献   

4.
采用大涡模拟(LES)方法,并结合动力学亚格子尺度应力(SGS)模型,通过数值求解柱坐标系下的滤波Navier-Stokes方程,研究了绕管轴旋转圆管内的湍流流动特性.为验证计算的可靠性,以及动力学SGS模型对于旋转湍流的适用性,将大涡模拟计算所得的结果,与相应的直接模拟(DNS)结果和实验数据进行了对比验证,吻合良好.进一步对旋转圆管湍流的物理机理进行了探讨,研究了湍流特性随旋转速率的变化规律.当旋转速率增加时,湍流流动有层流化的发展趋势.基于湍动能变化的关系,分析了旋转效应对湍流脉动生成的抑制作用.  相似文献   

5.
吴磊  肖左利 《力学学报》2021,53(10):2667-2681
亚格子(SGS)应力建模在湍流大涡模拟(LES)中有着极为重要的作用. 传统亚格子应力模型存在相对误差较大、耗散过强等问题. 近年来, 计算机技术的发展使得人工神经网络(ANN)等机器学习方法逐渐成为亚格子应力建模型的新研究范式. 本文着重考虑滤波宽度及雷诺数影响, 在不可压缩槽道湍流中建立了亚格子应力的ANN模型. 该模型以滤波后的直接数值模拟(fDNS)流场物理量及滤波尺度为输入信息, 相应滤波尺度下的亚格子应力为输出量. 通过对不同滤波尺度及不同雷诺数数据的训练, ANN模型能够给出与直接数值模拟(DNS)高度吻合的亚格子应力. 此外, 模型在亚格子耗散等非ANN建模量上也有着优异的预测性能, 与基于DNS获得的对应物理量的相关系数大都在0.9以上, 较梯度模型及Smagorinsky模型有明显提升. 在后验测试中, ANN模型对流向平均速度剖面的预测同样优于梯度模型、Smagorinsky模型及隐式大涡模拟(ILES)等传统LES模型. 在脉动速度均方根预测方面, 除了某些法向位置外ANN模型的性能整体上相对其他3个模型有所提升. 然而, 随着网格尺度的增大ANN模型预测的结果与fDNS结果的偏差逐渐增大. 总之, ANN方法在发展高精度亚格子应力模型上具有很大的潜力.   相似文献   

6.
This article develops a parallel large-eddy simulation (LES) with a one-equation subgrid-scale (SGS) model based on the Galerkin finite element method and three-dimensional (3D) brick elements. The governing filtered Navier–Stokes equations were solved by a second-order accurate fractional-step method, which decomposed the implicit velocity–pressure coupling in incompressible flow and segregated the solution to the advection and diffusion terms. The transport equation for the SGS turbulent kinetic energy was solved to calculate the SGS processes. This FEM LES model was applied to study the turbulence of the benchmark open channel flow at a Reynolds number Reτ = 180 (based on the friction velocity and channel height) using different model constants and grid resolutions. By comparing the turbulence statistics calculated by the current model with those obtained from direct numerical simulation (DNS) and experiments in literature, an optimum set of model constants for the current FEM LES model was established. The budgets of turbulent kinetic energy and vertical Reynolds stress were then analysed for the open channel flow. Finally, the flow structures were visualised to further reveal some important characteristics. It was demonstrated that the current model with the optimum model constants can predict well the organised structure near the wall and free surface, and can be further applied to other fundamental and engineering applications.  相似文献   

7.
The application of large-eddy simulation (LES) to particle-laden turbulence raises such a fundamental question as whether the LES with a subgrid scale (SGS) model can correctly predict Lagrangian time correlations (LTCs). Most of the currently existing SGS models are constructed based on the energy budget equations. Therefore, they are able to correctly predict energy spectra, but they may not ensure the correct prediction on the LTCs. Previous researches investigated the effect of the SGS modeling on the Eulerian time correlations. This paper is devoted to study the LTCs in LES. A direct numerical simulation (DNS) and the LES with a spectral eddy viscosity model are performed for isotropic turbulence and the LTCs are calculated using the passive vector method. Both a priori and a posteriori tests are carried out. It is observed that the subgrid;scale contributions to the LTCs cannot be simply ignored and the LES overpredicts the LTCs than the DNS. It is concluded from the straining hypothesis that an accurate prediction of enstrophy spectra is most critical to the prediction of the LTCs.  相似文献   

8.
When low‐order finite‐difference methods are applied in large eddy simulation (LES), the magnitude of the numerical error may be larger than that of the subgrid‐scale (SGS) term. In this paper, the effect of explicit filtering on the numerical error related to the spatial discretization of the convection term and the exact SGS term is studied a priori in the turbulent fully developed channel flow. As the filter width is increased the grid resolution is kept constant. Also filtering in the inhomogeneous wall‐normal direction is discussed. The main conclusions are related to two approaches to explicit filtering. In the traditional approach, the whole velocity field is filtered explicitly while in the alternative approach, only the non‐linear convection term of the Navier–Stokes equations is filtered explicitly. Based on the results presented in the paper it seems that the first approach leads to an unphysical situation. However, the later approach works in the desired way, and the numerical error becomes clearly smaller than the SGS term. The main difference between the two approaches seems to be the interpretation of the resolved non‐linear term in the filtered Navier–Stokes equations. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
Hao Lu 《力学快报》2011,1(4):041004
A recently introduced nonlinear model undergoes evaluations based on two isotropic turbulent cases: a University of Wiscosion-Madison case at a moderate Reynolds number and a Johns Hopkins University case at a high Reynolds number. The model uses an estimation of the subgrid-scale (SGS) kinetic energy to model the magnitude of the SGS stress tensor, and uses the normalized velocity gradient tensor to model the structure of the SGS stress tensor. Testing is performed for the first case through a comparison between direct numerical simulation (DNS) results and large eddy simulation (LES) results regarding resolved kinetic energy and energy spectrum. In the second case, we examine the resolved kinetic energy, the energy spectrum, as well as other key statistics including the probability density functions of velocities and velocity gradients, the skewness factors, and the flatness factors. Simulations using the model are numerically stable, and results are satisfactorily compared with DNS results and consistent with statistical theories of turbulence.  相似文献   

10.
Based on a priori tests, in large eddy simulation (LES) of turbulent fluid flow, the numerical error related to low‐order finite‐difference‐type methods can be large in comparison with the effect of subgrid‐scale (SGS) model. Explicit filtering has been suggested to reduce the error, and it has shown promising results in a priori studies and in some simulations with fourth‐order method. In this paper, the effect of explicit filtering on the total simulation error is studied together with a second‐order scheme, where the numerical error should be even larger. The fully developed turbulent channel flow between two parallel walls is used as a test case. Rather simple SGS models are applied, because these models are most likely used in practical applications of LES. Explicit filtering is here applied to the non‐linear convection term of the Navier–Stokes equations, four three‐dimensional filter functions are applied, and the effect of filtering is separated from the effect of SGS modelling. It is shown that the effect of filtering is rather large and smooth filters introduce an additional error component that increases the total simulation error. Finally, filtering via subfilter‐scale modelling is applied, and it is shown that this approach performs better. However, the large‐frequency components of the resolved flow field are not as effectively damped as when the non‐linear convection term is filtered. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
Large-eddy simulation (LES) has been extensively used as a tool to understand how various processes contribute to the dynamics of the stratocumulus layer. These studies are complicated by the fact that many processes are tied to the dynamics of the stably stratified interface that caps the stratocumulus layer, and which is inadequately resolved by LES. Recent direct numerical simulations (DNS) of isobaric mixing due to buoyancy reversal in a cloud-top mixing layer show that molecular effects are in some instances important in setting the cloud-top entrainment rate, which in turn influences the global development of the layer. This suggests that traditional LES are fundamentally incapable of representing cloud-top processes that depend on buoyancy reversal and that numerical artefacts can affect significantly the results. In this study, we investigate a central aspect of this issue by developing a test case that embodies important features of the buoyancy-reversing cloud-top layer. So doing facilitates a one-to-one comparison of the numerical algorithms typical of LES and DNS codes in a well-established case. We focus on the numerical effects only by switching off the subgrid-scale model in the LES code and using instead a molecular viscosity. We systematically refine the numerical grid and quantify numerical errors, validate convergence and assess computational efficiency of the low-order LES code compared to the high-order DNS. We show that the high-order scheme solves the cloud-top problem computationally more efficiently. On that basis, we suggest that the use of higher-order schemes might be more attractive than further increasing resolution to improve the representation of stratocumulus in LES.  相似文献   

12.
Thermally stratified shear turbulent channel flow with temperature oscillation on the bottom wall of the channel is calculated to investigate the behavior of turbulent flow and heat transfer by use of large eddy simulation (LES) approach coupled with dynamic subgrid-scale (SGS) models. The objective of this study is to deal with the effect of the temperature oscillation on turbulent behavior of thermally stratified turbulent channel flow and to examine the effectiveness of the LES technique for predicting statistically unsteady turbulent flow driven by time-varying buoyancy force. To validate the present calculation, thermally stratified shear turbulent channel flow is computed and compared with available data obtained by direct numerical simulation (DNS), which confirm that the present approach can be used to predict thermally stratified turbulent channel flow satisfactorily. Further, to illustrate the effect of the temperature oscillation with different Richardson numbers and periods of the oscillation on turbulence characteristics, the phase-averaged mean value and fluctuation of the resolved velocities and temperature, and instantaneous velocity fluctuation structures are analyzed.  相似文献   

13.
It is highly attractive to develop an efficient and flexible large eddy simulation(LES) technique for high-Reynolds-number atmospheric boundary layer(ABL) simulation using the low-order numerical scheme on a relatively coarse grid, that could reproduce the logarithmic profile of the mean velocity and some key features of large-scale coherent structures in the outer layer. In this study, an improved near-wall correction scheme for the vertical gradient of the resolved streamwise velocity in the s...  相似文献   

14.
Among the various hybrid methodologies, Speziale's very large eddy simulation (VLES) is one that was proposed very early. It is a unified simulation approach that can change seamlessly from Reynolds Averaged Navier–Stokes (RANS) to direct numerical simulation (DNS) depending on the numerical resolution. The present study proposes a new improved variant of the original VLES model. The advantages are achieved in two ways: (i) RANS simulation can be recovered near the wall which is similar to the detached eddy simulation concept; (ii) a LES subgrid scale model can be reached by the introduction of a third length scale, that is, the integral turbulence length scale. Thus, the new model can provide a proper LES mode between the RANS and DNS limits. This new methodology is implemented in the standard k ? ? model. Applications are conducted for the turbulent channel flow at Reynolds number of Reτ = 395, periodic hill flow at Re = 10,595, and turbulent flow past a square cylinder at Re = 22,000. In comparison with the available experimental data, DNS or LES, the new VLES model produces better predictions than the original VLES model. Furthermore, it is demonstrated that the new method is quite efficient in resolving the large flow structures and can give satisfactory predictions on a coarse mesh. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
在湍流数值模拟方法中,大涡模拟方法可以提供丰富的大涡旋信息,已逐渐成为复杂湍流问题数值研究的重要方法。而大涡模拟中,最重要的一环是尽量准确地构建能反映流场物理本质特征的亚格子应力模型。基于该思想,将一种新型的大涡模拟亚格子应力模型-Vreman亚格子应力模型用于高雷诺数三维后台阶流动的求解,计算结果与实验结果进行对比分析结果较吻合,验证了该模型的可靠性。这是对该模型用于无任何均匀流动方向的高雷诺数复杂湍流非定常流动的首次检验,计算结果优于基于传统的Smagorinsky涡粘性的动态亚格子模型。  相似文献   

16.
In the present work we study potential applicability of large eddy simulation (LES) method for prediction of flatness and skewness of compressible magnetohydrodynamic (MHD) turbulence. The knowledge of these quantities characterizes non-Gaussian properties of turbulence and can be used for verification of hypothesis on Gaussianity for the turbulent flow under consideration. Prediction accuracy of these quantities by means of LES method directly determines efficiency of reconstruction of probability density function (PDF) that depends on used subgrid-scale (SGS) parameterizations. Applicability of LES approach for studying of PDF properties of turbulent compressible magnetic fluid flow is investigated and potential feasibilities of five SGS parameterizations by means of comparison with direct numerical simulation results are explored. The skewness and the flatness of the velocity and the magnetic field components under various hydrodynamic Reynolds numbers, sonic Mach numbers, and magnetic Reynolds numbers are studied. It is shown that various SGS closures demonstrate the best results depending on change of similarity numbers of turbulent MHD flow. The case without any subgrid modeling yields sufficiently good results as well. This indicates that the energy pile-up at the small scales that is characteristic for the model without any subgrid closure, does not significantly influence on determination of PDF. It is shown that, among the subgrid models, the best results for studying of the flatness and the skewness of velocity and magnetic field components are demonstrated by the Smagorinsky model for MHD turbulence and the model based on cross-helicity for MHD case. It is visible from the numerical results that the influence of a choice subgrid parametrization for the flatness and the skewness of velocity is more essential than for the same characteristics of magnetic field.  相似文献   

17.
The combination of a high‐order unstructured spectral difference (SD) spatial discretization scheme with sub‐grid scale (SGS) modeling for large‐eddy simulation is investigated with particular focus on the consistent implementation of a structural mixed model based on the scale similarity hypothesis. The difficult task of deriving a consistent formulation for the discrete filter within the SD element of arbitrary order led to the development of a new class of three‐dimensional constrained discrete filters. The discrete filters satisfy a set of selected criteria and are completely local within the SD element. Their weights can be automatically computed at run time from the number of solution points within each element and the expected filter cutoff length scale. The novel discrete filters can be applied to any SGS model involving explicit filtering and to a broad class of high‐order discontinuous finite element numerical schemes. The code is applied to the computation of turbulent channel flows at three Reynolds numbers, namely Reτ = 180, 395, and 590 (based on the friction velocity uτ and channel half‐width δ). Results from computations with and without the SGS model are compared against results from direct numerical simulation. The numerical experiments suggest that the results are sensitive to the use of the SGS model, even when a high‐order numerical scheme is used, especially when the grid resolution is kept relatively low and mostly in terms of resolved Reynolds stresses. Results obtained using existing filters based on the projection of the solution over lower‐order polynomial bases are also shown and demonstrate that these filters are inadequate for SGS modeling purposes, mostly because of their inability to enforce the selected cutoff length scale with sufficient accuracy. The use of the similarity mixed formulation proved to be particularly accurate in reproducing SGS interactions, confirming that its well‐known potential can be realized in conjunction with state‐of‐the‐art high‐order numerical schemes.Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
当大涡模拟用于研究化学反应流动时,传统的滤波方法会导致化学反应项不封闭. 为克服这 个困难,发展了条件滤波大涡模拟方法. 在选择适当的条件变量后,条件滤波的化学反 应项可以表达为一个封闭项. 但同时也带来了新的问题:条件滤波耗散或条件滤波扩散项的 不封闭. 为解决这一问题,采用了直接数值模拟方法研究了它们在大小尺度上的统计特 性. 研究结果表明:条件滤波耗散和扩散对于大尺度的依赖主要体现在大尺度标量场中扩散 层结构的影响,同时小尺度脉动的变化几乎与条件滤波扩散无关,而它对条件滤波耗散却显 现出明显的作用. 在构造条件滤波耗散的亚格子模型时,小尺度脉动的作用不容忽视.  相似文献   

19.
Despite significant advances in the understanding and modelling of turbulent combustion, no general model has been proposed for simulating flames in industrial combustion devices. Recently, the increase in computational possibilities has raised the hope of directly solving the large turbulent scales using large eddy simulation (LES) and capturing the important time-dependant phenomena. However, the chemical reactions involved in combustion occur at very small scales and the modelling of turbulent combustion processes is still required within the LES framework. In the present paper, a recently presented model for the LES of turbulent premixed flames is presented, analysed and discussed. The flamelet hypothesis is used to derive a filtered source term for the filtered progress variable equation. The model ensures proper flame propagation. The effect of subgrid scale (SGS) turbulence on the flame is modelled through the flame-wrinkling factor. The present modelling of the source term is successfully tested against filtered direct numerical simulation (DNS) data of a V-shape flame. Further, a premixed turbulent flame, stabilised behind an expansion, is simulated. The predictions agree well with the available experimental data, showing the capabilities of the model for performing accurate simulations of unsteady premixed flames.  相似文献   

20.
The highly turbulent flow occurring inside gas-turbine combustors requires accurate simulation of scalar mixing if CFD methods are to be used with confidence in design. This has motivated the present paper, which describes the implementation of a passive scalar transport equation into an LES code, including assessment/testing of alternative discretisation schemes to avoid over/undershoots and excessive smoothing. Both second order accurate TVD and higher order accurate DRP schemes are assessed. The best performance is displayed by a DRP method, but this is only true on fine meshes; it produces similar (or larger) errors to a TVD scheme on coarser meshes, and the TVD approach has been retained for LES applications. The unsteady scalar mixing performance of the LES code is validated against published DNS data for a slightly heated channel flow. Excellent agreement between the current LES predictions and DNS data is obtained, for both velocity and scalar statistics. Finally, the developed methodology is applied to scalar transport in a confined co-axial jet mixing flow, for which experimental data are available. Agreement with statistically averaged fields for both velocity and scalar, is demonstrated to be very good, and a considerable improvement over the standard eddy viscosity RANS approach. Illustrations are presented of predicted time-resolved information e.g. time histories, and scalar pdf predictions. The LES results are shown, even using a simple Smagorinsky SGS model, to predict (correctly) lower values of the turbulent Prandtl number in the free shear regions of the flow, compared to higher values in the wall-affected regions. The ability to predict turbulent Prandtl number variations (rather than input these as in combustor RANS CFD models) is an important and promising feature of the LES approach for combustor flow simulation since it is known to be important in determining combustor exit temperature traverse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号