首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
采用高频电控热激发汽泡的方式构造微通道人工泡状流,可以有效抑制微通道沸腾流动的不稳定性和强化传热。本文基于Lattice Boltzmann大密度比多相流复合模型,数值研究了通道内人工泡状流的流动和传热,通过比较分析不同发泡频率的泡状流,量化分析了汽泡运动和增长对微通道流动与传热的相互影响。一方面着重分析了汽泡运动对微通道运动边界层以及汽泡相变增长对热边界层的影响,另一方面也研究了边界层对汽泡动力行为的影响,所得结论对研究抑制微通道沸腾流动不稳定性和强化传热有参考意义。  相似文献   

2.
Vapour bubble dynamics in cryogenic and boiling liquids affected by an acoustic field is considered. Linear pulsations and nonstationary growth of vapour bubbles in time due to linear effects of rectified heat and mass transfer are studied. The growth thresholds of vapour bubbles depending on thermodynamic parameters of liquid, static overcompression, and acoustic field frequency are presented. Essential influence of resonance properties of bubbles on the values of growth thresholds is shown. The results for different cryogenic liquids and boiling water are given.  相似文献   

3.
In the present work, nonlinear oscillations of a spherical, acoustically driven gas bubble in a Giesekus liquid are examined numerically. A novel approach based on the Gauss–Laguerre quadrature (GLQ) method is implemented to solve the integro-differential equation governing bubble dynamics in a Giesekus liquid. It is shown that, using this robust method, numerical results could be obtained at very high amplitudes and frequencies typical of ultrasound applications. The GLQ method also enabled obtaining results at very high Deborah and Reynolds numbers over prolonged dimensionless times not reported previously. Based on the results obtained in this work, it is concluded that the GLQ method is well suited for bubble dynamics studies in viscoelastic liquids. It is also concluded that the extensional-flow behavior of the liquid surrounding the bubble (as represented by the mobility factor in the Giesekus model) has a strong effect on the chaotic behavior of the bubble, and this is particularly so at high Deborah numbers, high amplitudes and/or high frequencies of the acoustic field. A period-doubling bifurcation structure is predicted to occur for certain values of the mobility factor.  相似文献   

4.
The fundamental behavior of boiling bubbles generated on a small film heater used for thermal ink jet (TIJ) printers is investigated experimentally under the condition of a single pulse heating in a pool of water. The pulse power and the pulse width are varied in wide ranges that include the printing conditions. As the pulse power is increased or the pulse width increased at a fixed high pulse power, numerous fine bubbles appear simultaneously on the heater and then coalesce into a thin vapor film to grow to a vapor bubble, before collapsing at the center of the heater. For a long pulse width sequence, the coalesced bubble repeats the growth and collapse. Bubble behavior is also studied in the same heat flux range using a platinum film heater enabling surface temperature measurement. From a comparison of the two heaters, the dominant mechanism of nucleation on the TIJ heater is believed to be spontaneous nucleation at around the heating rate for printing. The dependence of the size and lifetime of the coalesced bubble on pulse power and pulse width are examined. Based on the analytical model presented by Asai [J. Heat Transfer 113 (1991) 973], the pressure impulse arising during the rapid evaporation of the superheated liquid, presumed to dominate the subsequent growth of the coalesced bubble, is estimated from the measured size of the coalesced bubble. The relationship between the pressure impulse and the superheat energy in the liquid is discussed.  相似文献   

5.
The dynamics driven interaction between the bubbles in a cavitation cluster is known to be a complex phenomenon indicative of a highly active nonlinear as well as chaotic behavior in ultrasonic fields. By considering the cluster of encapsulated microbubble with a thin elastic shell in ultrasonic fields, in this paper, the dynamics of microbubbles has been studied via applying the methods of chaos physics. Bifurcation, Lyapunov exponent, and time series are plotted with respect to variables such as amplitude, initial bubble radius, frequency and viscosity. The findings of the study indicate that a bubble cluster undergoes a chaotic unstable region as the amplitude and frequency of ultrasonic pulse are increased mainly due to the period doubling phenomenon. The results of the present study are supported by findings of previous studies.  相似文献   

6.
This study presents the influence of pitch angle of an airfoil on its near-field vortex structure as well as the aerodynamic loads during a dynamic stall process. Dynamic stall behavior in a sinusoidally pitching airfoil is usually analyzed at low to medium reduced frequencies and with the maximum angle of attack of the airfoil not exceeding 25°. In this work, we study dynamic stall of a symmetric airfoil at medium to high reduced frequencies even as the maximum angle of attack goes from 25° to 45°. The evolution and growth of the laminar separation bubble, also known as a dynamic stall vortex, at the leading edge and the trailing edge are studied as the pitch cycle goes from the minimum to the maximum angle of attack. The effect of reduced frequencies on the vortex structure as well as the aerodynamic load coefficients is investigated. The reduced frequency is shown to be a bifurcation parameter triggering period doubling behavior. However, the bifurcation pattern is dependent on the variation of the pitch angle of incidence of the airfoil.  相似文献   

7.
Ellipsoidal linear and nonlinear oscillations of a gas bubble under harmonic variation of the surrounding fluid pressure are studied. The system is considered under conditions in which periodic sonoluminescence of the individual bubble in a standing acoustic wave is observable. A mathematical model of the bubble dynamics is suggested; in this model, the variation of the gas/fluid interface shape is described correct to the square of the amplitude of the deformation of the spherical shape of the bubble. The character of the air bubble oscillations in water is investigated in relation to the initial bubble radius and the fluid pressure variation amplitude. It is shown that nonspherical oscillations of limited amplitude can occur outside the range of linearly stable spherical oscillations. In this case, both oscillations with a period equal to one or two periods of the fluid pressure variation and aperiodic oscillations can be observed.  相似文献   

8.
The behavior of a spherical bubble in an ideal fluid, a viscous medium, and an incompressible viscoplastic medium with a yield stress is studied numerically and analytically when a time-varying periodic pressure is exerted at a sufficient distance from the surface of the bubble. Various modes of collapse are examined and classified. The critical values of the key parameters that characterize the behavior of this system are found; one of these parameters is the dimensionless frequency of external pressure fluctuations.  相似文献   

9.
It is shown that at large vapor contents, as a result of the combined action of phase transitions and capillary effects, the small radially symmetric oscillations of gas-vapor bubbles in an acoustic field are unstable in amplitude. The critical vapor concentration in the bubble separating regions of qualitatively different bubble behavior in the acoustic field is determined. Expressions are obtained for the decay rate of the radial oscillations of the gas-vapor bubble and the growth rate characterizing the rate of increase of oscillation amplitude in the region of instability. It is shown that adding only a slight amount of gas to the vapor bubble leads to a marked decrease in the growth rate. It is found that in the particular case of a vapor bubble the tine growth rate characterizing the development of the instability is of the same order as the second resonance frequency of the vapor bubble. This may serve to explain why in the case of vapor bubble oscillations the second resonance effect, which has been established in a number of theoretical studies and is widely discussed in the literature, has not yet been experimentally confirmed. The problem of spherically symmetrical processes around gasvapor bubbles was posed in [1], and their small oscillations are investigated in detail in [2–4].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 79–33, May–June, 1986.The authors are grateful to R. I. Nigmatulin for useful discussions.  相似文献   

10.
One of the main factors affecting the dynamics of homogeneous solution type pulse reactors is the formation of gas bubbles on the fission-fragment tracks [1, 2]. The behavior of the reactor depends very considerably on the size (10?5 cm) and growth rate of these bubbles [2], and it is, accordingly, a very important matter to study these properties. One convenient means of doing this lies in the acoustic method. The behavior of gas bubbles in the field of a sound wave has been studied in a large number of papers and reviews [3, 4]. In this paper we shall see the approximation of a sound wave of small amplitude to consider the dissipation of sound-wave energy in a gas bubble, at the same time allowing for inertia, surface tension, viscosity, heat transfer, and the diffusion of gas through the surface of the bubble.  相似文献   

11.
The evolution of the radius of a spherical cavitation bubble in an incompressible non-Newtonian liquid under the action of an external acoustic field is investigated. Non-Newtonian liquids having relaxation properties and also pseudoplastic and dilatant liquids with powerlaw equation of state are studied. The equations for the oscillation of the gas bubble are derived, the stability of its radial oscillation and its spherical form are investigated, and formulas are given for the characteristic frequency of oscillations of the cavitation hollow in a relaxing liquid. The equations are integrated numerically. It is shown that in a relaxing non-Newtonian liquid the viscosity may lead to the instability of the radial oscillations and the spherical form of the bubble. The results obtained here are compared with the behavior of a gas bubble in a Newtonian liquid.  相似文献   

12.
Transport models of diffusion-induced bubble growth in viscoelastic liquids are developed and evaluated. A rigorous model is formulated that can be used to describe bubble growth or collapse in a non-linear viscoelastic fluid, and takes into account convective and diffusive mass transport as well as surface tension and inertial effects. Predictions for bubble growth dynamics demonstrating the importance of fluid elasticity are presented. These predictions indicate that for diffusion-induced bubble growth in viscoelastic liquids, the lower bound for growth rate is given by growth in a Newtonian fluid and the upper bound by diffusion-controlled growth. The influence of non-linear fluid rheology on bubble growth dynamics is examined and found to be relatively minor in comparison to fluid elasticity. It is shown how previously published models employing various approximations can be derived from the rigorous model. Comparisons of predicted bubble growth dynamics from the rigorous and approximate models are used to establish the ranges of applicability for two commonly-used approximations. These comparisons indicate that models using a thin boundary layer approximation have a rather limited range of applicability. An analysis of published experimental bubble growth data is also carried out using appropriate transport models.  相似文献   

13.
The lock-in periodic solutions of the Stuart-Landau equation with a periodic excitation are studied. Using singularity theory, the bifurcation behavior of these solutions with respect to the excitation amplitude and frequency are investigated in detail, respectively. The results show that the universal unfolding with respect to the excitation amplitude possesses codimension 3. The transition sets in unfolding parameter plane and the bifurcation diagrams are plotted under some conditions. Additionally, it has also been proved that the bifurcation problem with respect to frequence possesses infinite codimension. Therefore the dynamical bifurcation behavior is very complex in this case. Some new dynamical phenomena are presented, which are the supplement of the results obtained by Sun Liang et al.  相似文献   

14.
The paper presents an investigation of Euler–Lagrangian methods for cavitating two-phase flows. The Euler–Euler methods, widely used for simulations of cavitating flows in ship technology, perform well in regions of moderate flow changes but fail in zones of strong, vortical flow. Reasons are the strong approximations of cavitation models in the Euler concept. Alternatively, Euler–Lagrangian concepts enable more detailed formulations for transport, dynamics and acoustic of discrete vapor bubbles. Test calculations are performed to study the influence of different parameters in the equations of motion and in the Rayleigh–Plesset equation for bubble dynamics. Results confirm that only Lagrangian models are able to describe correctly the bubble behavior in vortices, while Eulerian results deviate strongly. Lagrangian formulations enable additionally the determination of acoustic pressure of cavitation noise. Two-way coupling between the phases is required for large regions of the vapor phase. A new coupling concept between continuous fluid flow and discrete bubble phase is developed and demonstrated for flow through a nozzle. However, the iterative coupling between the phases via volume fractions is computationally expensive and should therefore be applied only in regions where Eulerian treatment fails. A corresponding local concept for combination with an Euler–Euler method is outlined and is in progress.  相似文献   

15.
本文从流体动力学角度探究气泡下沉现象的机理,对垂直振动圆柱容器中的气泡下沉行为进行了系统研究。根据附加质量以及气泡压缩性概念,建立出现下沉效应的可压缩性气泡数学模型,并通过分离变量法分析气泡下沉的临界位移以及运动速度。研究表明,正弦激励振幅以及频率是影响气泡下沉条件的重要因素,决定了临界位移与运动速度的大小,且振幅和频率越大,临界位移越小,气泡越容易下沉。  相似文献   

16.
17.
Based on the theory of compressible fluid, a three-dimension boundary element method is utilized to research the motion of bubble. The far-field noise radiation during the growth and contraction is calculated by the Kirchhoff formula and the Ffowcs Williams-Hawkings (FW-H) formula with a fixed radiation surface being arranged at the near-field of bubble as a new acoustic source. The results show that the amplitude of the sound pressure induced by non-spherical bubble is lower than that of spherical bubble in the contraction phase. The retardance effect is more obvious when the observer is farther away from the bubble. In the anaphase of contraction, the observer with the maximum amplitude of sound pressure moves up with the obvious jet. Larger buoyance parameters will generate lower sound pressure amplitudes in the anaphase, while larger intensive parameters will cause higher sound pressure amplitudes in the whole procedure of bubble motion.  相似文献   

18.
The effect of weak compressibility of a fluid on the interaction between spherical bubbles in a strong acoustic field is considered. A small parameter ɛ which represents the ratio of the characteristic velocity of radial oscillations of the bubbles to the speed of sound in the fluid is used as a parameter characterizing the fluid compressibility. The equations governing the interaction between two bubbles are derived with an accuracy O(ɛ) in the case in which the ratio of the characteristic velocities of their translational and radial motions is of the order of ɛ. It is shown that neglecting the fluid compressibility effect due to the bubble interaction can lead to either enhancement or attenuation of their radial oscillations following the main compression stage, variation in the oscillation frequency, the bubble approach velocity, and the velocity of the spatial motion of the coupled pair, and the bubble approach and collision rather than their moving away from one another with the formation of a coupled pair.  相似文献   

19.
Seed bubbles are generated on microheaters located at the microchannel upstream and driven by a pulse voltage signal, to improve flow and heat transfer performance in microchannels. The present study investigates how seed bubbles stabilize flow and heat transfer in micro-boiling systems. For the forced convection flow, when heat flux at the wall surface is continuously increased, flow instability is self-sustained in microchannels with large oscillation amplitudes and long periods. Introduction of seed bubbles in time sequence improves flow and heat transfer performance significantly. Low frequency (∼10 Hz) seed bubbles not only decrease oscillation amplitudes of pressure drops, fluid inlet and outlet temperatures and heating surface temperatures, but also shorten oscillation cycle periods. High frequency (∼100 Hz or high) seed bubbles completely suppress the flow instability and the heat transfer system displays stable parameters of pressure drops, fluid inlet and outlet temperatures and heating surface temperatures. Flow visualizations show that a quasi-stable boundary interface from spheric bubble to elongated bubble is maintained in a very narrow distance range at any time. The seed bubble technique almost does not increase the pressure drop across microsystems, which is thoroughly different from those reported in the literature. The higher the seed bubble frequency, the more decreased heating surface temperatures are. A saturation seed bubble frequency of 1000–2000 Hz can be reached, at which heat transfer enhancement attains the maximum degree, inferring a complete thermal equilibrium of vapor and liquid phases in microchannels. Benefits of the seed bubble technique are the stabilization of flow and heat transfer, decreasing heating surface temperatures and improving temperature uniformity of the heating surface.  相似文献   

20.
为了探讨超声珩磨作用下磨削区的空化机理,基于速度势叠加原理,考虑超声珩磨速度和珩磨压力,建立了磨削区两空化泡的动力学模型. 数值模拟了磨削区空化泡初始半径、两空化泡间距、超声声压幅值、珩磨压力、珩磨头转速对磨削区两空化泡动力学特性的影响. 研究表明,考虑两空化泡之间的相互作用时,要想获得良好的空化效果,可将两空化泡初始半径之比控制在3 倍以内;选择较高的超声波声压幅值与较低的珩磨压力,并且使超声波声压幅值与珩磨压力和液体静压力之差介于0.66~1.89MPa 之间;增大珩磨头转速空化泡溃灭也略有加速;通过试验测量材料表面粗糙度的方法间接验证了理论分析的合理性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号