首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 68 毫秒
1.
合成了一种腈基功能化有机硅化合物3-氰乙基-二乙氧基-甲基硅烷(DESCN), 并对其化学结构和电化学窗口进行了表征. 采用恒流充放电、 扫描电子显微镜(SEM)、 X射线光电子能谱(XPS)及电化学阻抗谱(EIS)等方法研究了DESCN添加剂对LiFePO4电池低温性能的影响. 结果表明, DESCN化合物能够在电极表面参与形成更薄、 更均匀且致密的固体电解质界面(SEI)膜, 抑制电解液副反应的发生, 减小界面膜阻抗, 有利于低温下电极/电解液界面的Li+扩散和电荷转移, 从而提高LiFePO4电池的低温性能.  相似文献   

2.
有机硅电解液具有优良的热稳定性、低可燃性、无毒性、高电导率和高分解电压等优点,近年来成为了锂离子电池新型电解液的研究热点。本文综述了有机硅电解液的研究进展,重点介绍了聚醚有机硅电解液的设计合成、物理化学性能、与电解质盐和电极材料的匹配性关系及其在电池中的性能表现;简述了有机硅功能化电解液添加剂的研究进展,如成膜添加剂、阻燃添加剂、吸酸吸水添加剂等;最后对有机硅电解液的进一步研究趋势和应用前景进行了展望。  相似文献   

3.
高安全高电压电解液的开发是锂离子电池电解液发展的重要方向。有机硅化合物由于具有独特的理化性能,使其成为锂离子电池电解液领域的研究热点之一。本文综述了有机硅电解液的研究进展,重点从功能分子设计的角度介绍含碳酸酯基、氨基甲酸酯基、腈基、离子液体、含氟类的有机硅功能电解液溶剂制备及电池性能表现;详细阐述具有结构多样性的有机硅化合物用作高电压添加剂、高安全添加剂、高/低温添加剂、储存/耐自放电添加剂、吸酸吸水添加剂及其在不同电池材料体系中的应用。最后,对有机硅电解液的研究趋势和应用前景进行了展望。  相似文献   

4.
陈士庆  代文慧  许和伟  刘兆平 《化学通报》2018,81(11):1000-1005
本文介绍了一种含双(三氟甲烷磺酰)亚胺锂(Li TFSI)和环丁砜(TMS)的高浓度电解液。采用FT-IR对样品进行结构表征,通过线性扫描伏安法(LSV)和循环伏安法(CV)研究电解液的电化学性能。结果表明,高浓度TMS/Li TFSI(摩尔比2∶1)电解液的电化学和化学稳定性良好,电化学窗口拓宽至5. 02V,可以有效抑制Al箔腐蚀,适用于5V级的镍锰酸锂(Li Ni_(0.5)Mn1. 5O4)正极材料。室温下,基于TMS/Li TFSI高浓度电解液的Li Ni_(0.5)Mn1. 5O4半电池经过大倍率充放电后,0. 1C的比容量基本回复到原始状态;在0. 2C的倍率下实现良好的循环,前25圈的库仑效率大于92%。  相似文献   

5.
自便携式电子设备以及电动汽车问世后,锂离子电池储能设备已经难以满足当前的生活与生产需求.锂离子电池作为商业储能设备市场的主要占有者,正朝着更高的能量密度、更长久的使用寿命以及更高的安全性能等方向发展.虽然通过提高锂离子电池的截止电压可以达到提升电池重量密度和体积密度的效果,但电池体系在高电压下将非常不稳定,这将导致锂离子电池的循环性能迅速衰减.同时,大量的电解液分解产物的堆积,导致电池的界面阻抗上升.另一方面,气体的生成形成了电池的安全隐患.本文针对高电压电解液的溶剂设计和电解液添加剂设计两个方面,回顾了过去一段时间里高电压电解液的发展.根据当前的理论研究基础,提出了高比能锂离子电池电解液的设计重心和未来该领域的主要研究方向.  相似文献   

6.
开发高电压正极材料是发展高能量密度锂离子电池的重要途径之一。常规电解液在高电压下容易与正极材料表面发生副反应,影响高电压正极材料性能的发挥,因此,高电压电解液引起了人们广泛的关注。本文主要从新型溶剂体系和常规碳酸酯溶剂体系两方面对锂离子电池高电压电解液进行综述与评价,提出了现有电解液的不足及面临的问题。从电解液溶剂分子设计理论入手,分析了砜类溶剂、腈基溶剂和离子液体等新型溶剂作为高压电解液溶剂的优缺点,同时探讨了不同种类添加剂在常规碳酸酯溶剂体系中的作用机理。此外,本文还介绍了理论计算方法在锂离子电池高电压电解液研究中的应用,并对其在设计新型高电压电解液中的应用前景进行了展望。  相似文献   

7.
提高电压是提高锂离子电池比能量的重要途径之一。例如,LiNi0.5Mn1.5O4(4.7 V)、LiNiPO4(5.1 V)和富锂锰基等电极材料在较高的充电截止电压下表现出较高的能量密度和较低的成本,具有很好的应用前景。另外,提高LiCoO2和三元电池体系的充电截止电压是提升电池能量密度的简单有效措施。但是,当电池充电截止电压提高时,不仅会造成电解液在正极/电解液界面的氧化分解,还会加速正极中金属阳离子在电解液中的溶解,造成电池循环性能和安全性下降。采用不同的正极界面修饰用电解液添加剂,既可以有效钝化正极/电解液界面,抑制电解液的分解,还可以有效抑制正极结构的破坏。本文从添加剂的分子结构出发,介绍了磺酸酯、硼酸酯、磷酸酯、氟代碳酸酯、腈类、酸酐和锂盐等添加剂在正极界面的相关研究成果,并对不同添加剂的作用机理进行了详细的解释和归纳;另外,介绍了添加剂的联用技术在不同电池体系中的最新研究成果;最后,对新型正极界面修饰用电解液添加剂的开发进行了展望。  相似文献   

8.
总结了近年来量子化学方法在锂离子电池电解液研究中的应用进展,阐述了量子化学方法在新型锂盐设计、功能添加剂作用机理分析和电极/电解液界面膜的形成过程研究中发挥的作用,对其用来设计锂离子电池电解液功能分子作出展望。  相似文献   

9.
夏兰  余林颇  胡笛  陈政 《化学学报》2017,75(12):1183-1195
电解液作为锂离子电池的重要组成部分,起着传输离子的作用,电解液的性质对电池的容量、循环性能及安全性能等影响巨大.近年来,随着高电压、高能量密度锂离子电池的开发应用,现有常规碳酸酯电解液存在正极稳定性差、闪点低、易燃烧等问题.因此,发展高电压耐燃电解液是应用高电压高容量正极材料、发展高电压高容量高安全性锂离子电池的迫切需要.主要综述了高电压电解液、耐燃性电解液及兼具抗氧化性和耐燃性的高浓度电解液的研究进展和现状.在此基础上,对锂离子电池新型电解液的发展方向进行了展望.  相似文献   

10.
任岩  文焱  连芳  仇卫华 《化学通报》2015,78(2):107-112
目前提高锂离子电池能量密度的途径主要有提高锂离子电池的工作电压和应用高工作电压的正极材料,因此,锂离子电池高电压电解液的研究和开发势在必行。本文概述了锂离子电池电解液和高电压电解液的特点,介绍了前线轨道理论中的HOMO和LUMO对电解液设计的指导意义。尤其是结合日本知名企业和科研机构在高电压电解液方面的研究成果,阐述了两种实现电解质高电压化的途径,即提高溶剂本身的耐氧化性和使用添加剂,总结了氟代酯、氟化醚、硼酸酯、砜类和耐氧化添加剂等用于高电压电解液中的关键物质类型,并讨论了目前高电压电解液研究开发所带来的启示。  相似文献   

11.
As a functional additive, succinonitrile (SN) can be used in LiNi0.5Co0.2Mn0.3O2/graphite lithium ion batteries to broaden the oxidation electrochemical window of the electrolyte and significantly improve its rate performance and high-voltage cycle performance. Linear sweep voltammetry (LSV) shows that EC/EMC-based electrolytes with SN have higher oxidation potentials (approximately 6.1 V vs Li/Li+). The capacity retention of LiNi0.5Co0.2Mn0.3O2/graphite full cell with 0.5-wt% SN added to the electrolyte and 120 cycles between 2.75 and 4.4 V was significantly increased from 67.96% to 84.0%. It is indicated that the LiNi0.5Co0.2Mn0.3O2 (NCM523) battery containing 0.5-wt% SN-based electrolyte has better cycleability and capacity retention at high cutoff voltage. In addition, electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS) of the full cell were used to characterize the effect of SN on the cell. It is proved that the SN participates in the interfacial reaction between the electrode and the electrolyte to form a stable solid electrolyte interphase (SEI) layer, thereby effectively suppressing the increase of the charge transfer resistance and reducing the elution of the transition metal cations. These results indicate that SN can be used as a functional additive for high-voltage lithium-ion batteries.  相似文献   

12.
A novel polymer matrix with a polar carbonyl group was designed and used to prepare an all‐solid polymer electrolyte in lithium rechargeable batteries. The ionic conductivity of this type of polymer electrolyte was examined. The relationship between the lithium salt concentration and ionic conductivity was investigated by Fourier transform infrared (FTIR) spectroscopy. The carbonyl groups in the polymer matrix effectively interacted with the lithium salt, which improved the ionic conductivity at a large range of temperatures. The ionic conductivity of this type of polymer electrolyte was approximately 10?4 S cm?1 at room temperature. The stability of the interface between electrode and electrolyte was evaluated by measuring the alternating current (AC) impedance. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
Vanadium pentoxide (V2O5) exhibits high theoretical capacities when used as a cathode in lithium ion batteries (LIBs), but its application is limited by its structural instability as well as its low lithium and electronic conductivities. A porous composite of V2O5-SnO2/carbon nanotubes (CNTs) was prepared by a hydrothermal method and followed by thermal treatment. The small particles of V2O5, their porous structure and the coexistence of SnO2 and CNTs can all facilitate the diffusion rates of the electrons and lithium ions. Electrochemical impedance spectra indicated higher ionic and electric conductivities, as compared to commercial V2O5. The V2O5-SnO2/CNTs composite gave a reversible discharge capacity of 198 mAh·g?1 at the voltage range of 2.05–4.0 V, measured at a current rate of 200 mA·g?1, while that of the commercial V2O5 was only 88 mAh·g?1, demonstrating that the porous V2O5-SnO2/CNTs composite is a promising candidate for high-performance lithium secondary batteries.  相似文献   

14.
采用无表面活性剂回流法制备了蜂窝状TiO2/石墨烯(GNs)复合材料.扫描电子显微镜(SEM)及透射电子显微镜(TEM)表征结果表明,TiO2颗粒约5~10 nm,均匀地分散在石墨烯的表面.锂电池测试显示,1C充电容量稳定在240.1 mAh.g-1;30C充电容量为169.5 mAh.g-1;当电流调回1C时,其充电容量仍可完全恢复(241.7 mAh.g-1);10C 300周期循环电极容量保持率为89.8%.  相似文献   

15.
离子电池正极材料LiNi0.5Mn0.5O2的合成   总被引:3,自引:0,他引:3  
采用共沉淀法制备锂离子电池正极材料LiNi0.5Mn0.5O2,前驱体制备过程中金属离子氢氧化物的形貌、粒径分布和最终合成材料的性能息息相关。本文讨论了共沉淀反应过程中沉淀体系、pH值、搅拌速度和氨水浓度对沉淀产物形貌的影响。同时还考察了烧结制度对材料电化学性能的影响。结果表明,在优化条件下制备的正极材料LiNi0.5Mn0.5O2首次放电容量高达178 mAh·g-1,50个循环后放电容量稳定保持在165 mAh·g-1(电压范围2.8~4.5 V,电流密度30 mA·g-1)。  相似文献   

16.
为提高锂离子电池正极材料Li[Li0.2Ni0.2Mn0.6]O2的首次充放电效率,对固相法合成的该材料进行了酸浸的改性研究。通过X射线衍射(XRD)、扫描电子显微镜(SEM)对所得样品的结构、形貌进行了表征。结果表明,Li[Li0.2Ni0.2Mn0.6]O2经过酸处理后,首次放电效率得到了较大的提高,但是放电中值电压明显下降。其中,0.5 mol.L-1的硝酸浸泡5 h的效果最佳,首次放电效率达到了86.7%,同时放电容量达到最大值的循环次数大大减少。酸浸改性的原因被归结于材料表面出现了富锂尖晶石结构Li4Mn5O12相。  相似文献   

17.
以聚苯乙烯(PS)胶晶作为铸模,采用纳米铸造工艺及后续煅烧的方法合成了三维有序大孔Fe2SiO4/SiO2@C纳米玻璃陶瓷锂离子电池负极材料。溶胶-凝胶工艺产生的凝胶在650℃氩气氛炉中煅烧后,Fe2SiO4纳米晶体从含铁元素的SiO2基玻璃中结晶析出,形成由Fe2SiO4纳米晶体、铁离子(Fe3+)修饰的玻璃态SiO2和非晶碳组成的三维有序大孔纳米玻璃陶瓷。在50 mA·g-1电流密度下进行充放电时,其放电容量可达450 mAh·g-1以上,电流密度增加到250 mA·g-1时可逆放电容量仍旧稳定地保持在260 mAh·g-1,而具有同样有序大孔结构和含碳量的非晶态SiO2@C材料的放电比容量在50 mA·g-1电流密度时仅为15 mAh·g-1。这些结果表明,Fe2SiO4纳米晶体及Fe3+有助于SiO2基玻璃陶瓷实现可逆储锂过程。  相似文献   

18.
以聚苯乙烯(PS)胶晶作为铸模,采用纳米铸造工艺及后续煅烧的方法合成了三维有序大孔Fe_2SiO_4/SiO_2@C纳米玻璃陶瓷锂离子电池负极材料。溶胶-凝胶工艺产生的凝胶在650℃氩气氛炉中煅烧后,Fe_2SiO_4纳米晶体从含铁元素的SiO_2基玻璃中结晶析出,形成由Fe_2SiO_4纳米晶体、铁离子(Fe3+)修饰的玻璃态SiO_2和非晶碳组成的三维有序大孔纳米玻璃陶瓷。在50 m A·g~(-1)电流密度下进行充放电时,其放电容量可达450 m Ah·g~(-1)以上,电流密度增加到250 m A·g~(-1)时可逆放电容量仍旧稳定地保持在260 m Ah·g~(-1),而具有同样有序大孔结构和含碳量的非晶态SiO_2@C材料的放电比容量在50 m A·g~(-1)电流密度时仅为15 m Ah·g~(-1)。这些结果表明,Fe_2SiO_4纳米晶体及Fe~(3+)有助于SiO_2基玻璃陶瓷实现可逆储锂过程。  相似文献   

19.
采用溶胶-凝胶法, 用二氧化钼(MoO2)和C共同包覆Si/石墨粒子制备了Si/石墨/MoO2/C锂离子电池负极材料. 利用X射线衍射(XRD)、 扫描电子显微镜(SEM)、 透射电子显微镜(TEM)、 循环伏安(CV)和电化学阻抗(EIS)等分析了材料的形貌和性质. 结果表明, MoO2/C的共包覆在缓解材料体积膨胀的同时提高了材料的电子和离子电导率, 进而提高了材料的电化学性能. 复合材料的首次充电比容量为2494 mA·h/g, 首次库仑效率为72%, 经过100次循环后比容量为636.6 mA·h/g.  相似文献   

20.
以石墨烯复合粉末为添加剂,采用一步水热法制备了一种SnS2/GCP微米复合材料。在所得到的复合材料中,SnS2纳米片相互缠绕组成多孔球状SnS2颗粒,石墨烯复合粉末均匀的包裹在球状SnS2颗粒表面。将所制备的SnS2/GCP微米复合材料用作锂离子电池负极材料测其电化学性能。结果显示,在0.1 A·g-1的电流密度下可逆比容量为795.6 mAh·g-1,循环100次后比容量损失不到1%。相比于SnS2其比容量和循环稳定性得到了明显改善,主要是由于石墨烯复合粉末的加入,不仅缓解了SnS2颗粒在充放电过程中的团聚和体积膨胀,而且还提高了SnS2颗粒的电导率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号